Spaces:
Runtime error
Runtime error
viboognesh
commited on
Upload 3 files
Browse files- Dockerfile +17 -0
- main.py +174 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python 3.12 image
|
2 |
+
FROM python:3.12
|
3 |
+
|
4 |
+
# Set the working directory to /app
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /app
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
12 |
+
|
13 |
+
# Make port 7860 available to the world outside this container
|
14 |
+
EXPOSE 7860
|
15 |
+
|
16 |
+
# Run main.py when the container launches
|
17 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Depends
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from typing import List
|
4 |
+
import os
|
5 |
+
import aiofiles
|
6 |
+
import uuid
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
# from dotenv import load_dotenv
|
10 |
+
|
11 |
+
from langchain_community.document_loaders import TextLoader, Docx2txtLoader, PyPDFLoader
|
12 |
+
from langchain.prompts import ChatPromptTemplate, PromptTemplate
|
13 |
+
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
14 |
+
from langchain_community.document_loaders.csv_loader import CSVLoader
|
15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
+
from langchain.memory import ConversationBufferMemory
|
17 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
18 |
+
from langchain_community.vectorstores import Chroma
|
19 |
+
from langchain.chains import ConversationalRetrievalChain
|
20 |
+
|
21 |
+
# load_dotenv()
|
22 |
+
|
23 |
+
app = FastAPI()
|
24 |
+
|
25 |
+
origins = ["https://viboognesh-react-chat.static.hf.space"]
|
26 |
+
|
27 |
+
app.add_middleware(
|
28 |
+
CORSMiddleware,
|
29 |
+
allow_origins=origins,
|
30 |
+
allow_credentials=True,
|
31 |
+
allow_methods=["GET", "POST"],
|
32 |
+
allow_headers=["*"],
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
class ConversationChainManager:
|
37 |
+
def __init__(self):
|
38 |
+
self.conversation_chain = None
|
39 |
+
self.llm_model = ChatOpenAI()
|
40 |
+
self.embeddings = OpenAIEmbeddings()
|
41 |
+
|
42 |
+
def create_conversational_chain(self, file_paths: List[str], session_id: str):
|
43 |
+
docs = self.get_docs(file_paths)
|
44 |
+
memory = ConversationBufferMemory(
|
45 |
+
memory_key="chat_history", return_messages=True
|
46 |
+
)
|
47 |
+
vectordb = Chroma.from_documents(
|
48 |
+
docs,
|
49 |
+
self.embeddings,
|
50 |
+
collection_name=session_id,
|
51 |
+
persist_directory="./chroma_db",
|
52 |
+
)
|
53 |
+
retriever = vectordb.as_retriever()
|
54 |
+
self.conversation_chain = ConversationalRetrievalChain.from_llm(
|
55 |
+
llm=self.llm_model,
|
56 |
+
retriever=retriever,
|
57 |
+
condense_question_prompt=self.get_question_generator_prompt(),
|
58 |
+
combine_docs_chain_kwargs={
|
59 |
+
"document_prompt": self.get_document_prompt(),
|
60 |
+
"prompt": self.get_final_prompt(),
|
61 |
+
},
|
62 |
+
memory=memory,
|
63 |
+
)
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def get_docs(file_paths: List[str]) -> List:
|
67 |
+
docs = []
|
68 |
+
for file_path in file_paths:
|
69 |
+
if file_path.endswith(".txt"):
|
70 |
+
loader = TextLoader(file_path)
|
71 |
+
document = loader.load()
|
72 |
+
splitter = RecursiveCharacterTextSplitter(
|
73 |
+
chunk_size=1000, chunk_overlap=100
|
74 |
+
)
|
75 |
+
txt_documents = splitter.split_documents(document)
|
76 |
+
docs.extend(txt_documents)
|
77 |
+
elif file_path.endswith(".csv"):
|
78 |
+
loader = CSVLoader(file_path)
|
79 |
+
csv_documents = loader.load()
|
80 |
+
docs.extend(csv_documents)
|
81 |
+
elif file_path.endswith(".docx"):
|
82 |
+
loader = Docx2txtLoader(file_path)
|
83 |
+
document = loader.load()
|
84 |
+
splitter = RecursiveCharacterTextSplitter(
|
85 |
+
chunk_size=1000, chunk_overlap=100
|
86 |
+
)
|
87 |
+
docx_documents = splitter.split_documents(document)
|
88 |
+
docs.extend(docx_documents)
|
89 |
+
elif file_path.endswith(".pdf"):
|
90 |
+
loader = PyPDFLoader(file_path)
|
91 |
+
pdf_documents = loader.load_and_split()
|
92 |
+
docs.extend(pdf_documents)
|
93 |
+
return docs
|
94 |
+
|
95 |
+
@staticmethod
|
96 |
+
def get_document_prompt() -> PromptTemplate:
|
97 |
+
document_template = """Document Content:{page_content}
|
98 |
+
Document Path: {source}"""
|
99 |
+
return PromptTemplate(
|
100 |
+
input_variables=["page_content", "source"],
|
101 |
+
template=document_template,
|
102 |
+
)
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
def get_question_generator_prompt() -> PromptTemplate:
|
106 |
+
question_generator_template = """Combine the chat history and follow up question into
|
107 |
+
a standalone question.\n Chat History: {chat_history}\n
|
108 |
+
Follow up question: {question}
|
109 |
+
"""
|
110 |
+
return PromptTemplate.from_template(question_generator_template)
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def get_final_prompt() -> ChatPromptTemplate:
|
114 |
+
final_prompt_template = """Answer question based on the context and chat_history.
|
115 |
+
If you cannot find answers, ask more related questions from the user.
|
116 |
+
Use only the basename of the file path as name of the documents.
|
117 |
+
Mention document name of the documents you used in your answer.
|
118 |
+
|
119 |
+
context:
|
120 |
+
{context}
|
121 |
+
|
122 |
+
chat_history:
|
123 |
+
{chat_history}
|
124 |
+
|
125 |
+
question:
|
126 |
+
{question}
|
127 |
+
|
128 |
+
Answer:
|
129 |
+
"""
|
130 |
+
|
131 |
+
messages = [
|
132 |
+
SystemMessagePromptTemplate.from_template(final_prompt_template),
|
133 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
134 |
+
]
|
135 |
+
|
136 |
+
return ChatPromptTemplate.from_messages(messages)
|
137 |
+
|
138 |
+
|
139 |
+
@app.post("/upload_files/")
|
140 |
+
async def upload_files(
|
141 |
+
files: List[UploadFile] = File(...),
|
142 |
+
conversation_chain_manager: ConversationChainManager = Depends(),
|
143 |
+
):
|
144 |
+
session_id = str(uuid.uuid4())
|
145 |
+
session_folder = f"uploads/{session_id}"
|
146 |
+
os.makedirs(session_folder, exist_ok=True)
|
147 |
+
file_paths = []
|
148 |
+
for file in files:
|
149 |
+
file_path = f"{session_folder}/{file.filename}"
|
150 |
+
async with aiofiles.open(file_path, "wb") as out_file:
|
151 |
+
content = await file.read()
|
152 |
+
await out_file.write(content)
|
153 |
+
file_paths.append(file_path)
|
154 |
+
|
155 |
+
conversation_chain_manager.create_conversational_chain(file_paths, session_id)
|
156 |
+
shutil.rmtree(session_folder)
|
157 |
+
print("conversational_chain_manager created")
|
158 |
+
return {"message": "ConversationalRetrievalChain is created. Please ask questions."}
|
159 |
+
|
160 |
+
|
161 |
+
@app.get("/predict/")
|
162 |
+
async def predict(
|
163 |
+
query: str, conversation_chain_manager: ConversationChainManager = Depends()
|
164 |
+
):
|
165 |
+
if conversation_chain_manager.conversation_chain is None:
|
166 |
+
system_prompt = "Answer the question and also ask the user to upload files to ask questions from the files.\n"
|
167 |
+
response = conversation_chain_manager.llm_model.invoke(system_prompt + query)
|
168 |
+
answer = response.content
|
169 |
+
else:
|
170 |
+
response = conversation_chain_manager.conversation_chain.invoke(query)
|
171 |
+
answer = response["answer"]
|
172 |
+
|
173 |
+
print("predict called")
|
174 |
+
return {"answer": answer}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
sqlalchemy
|
4 |
+
langchain_community
|
5 |
+
langchain
|
6 |
+
pypdf
|
7 |
+
langchain_openai
|
8 |
+
python-dotenv
|
9 |
+
python-multipart
|
10 |
+
chromadb
|
11 |
+
aiofiles
|