Spaces:
Running
Running
victorisgeek
commited on
Upload core.py
Browse files- assets/core.py +906 -0
assets/core.py
ADDED
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import shutil
|
7 |
+
import argparse
|
8 |
+
import platform
|
9 |
+
import datetime
|
10 |
+
import subprocess
|
11 |
+
import insightface
|
12 |
+
import onnxruntime
|
13 |
+
import numpy as np
|
14 |
+
import gradio as gr
|
15 |
+
import threading
|
16 |
+
import queue
|
17 |
+
from tqdm import tqdm
|
18 |
+
import concurrent.futures
|
19 |
+
from moviepy.editor import VideoFileClip
|
20 |
+
|
21 |
+
from face_swapper import Inswapper, paste_to_whole
|
22 |
+
from face_analyser import detect_conditions, get_analysed_data, swap_options_list
|
23 |
+
from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list
|
24 |
+
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations
|
25 |
+
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid
|
26 |
+
|
27 |
+
## ------------------------------ USER ARGS ------------------------------
|
28 |
+
|
29 |
+
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
|
30 |
+
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
|
31 |
+
parser.add_argument("--batch_size", help="Gpu batch size", default=32)
|
32 |
+
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
|
33 |
+
parser.add_argument(
|
34 |
+
"--colab", action="store_true", help="Enable colab mode", default=False
|
35 |
+
)
|
36 |
+
user_args = parser.parse_args()
|
37 |
+
|
38 |
+
## ------------------------------ DEFAULTS ------------------------------
|
39 |
+
|
40 |
+
USE_COLAB = user_args.colab
|
41 |
+
USE_CUDA = user_args.cuda
|
42 |
+
DEF_OUTPUT_PATH = user_args.out_dir
|
43 |
+
BATCH_SIZE = int(user_args.batch_size)
|
44 |
+
WORKSPACE = None
|
45 |
+
OUTPUT_FILE = None
|
46 |
+
CURRENT_FRAME = None
|
47 |
+
STREAMER = None
|
48 |
+
DETECT_CONDITION = "best detection"
|
49 |
+
DETECT_SIZE = 640
|
50 |
+
DETECT_THRESH = 0.6
|
51 |
+
NUM_OF_SRC_SPECIFIC = 10
|
52 |
+
MASK_INCLUDE = [
|
53 |
+
"Skin",
|
54 |
+
"R-Eyebrow",
|
55 |
+
"L-Eyebrow",
|
56 |
+
"L-Eye",
|
57 |
+
"R-Eye",
|
58 |
+
"Nose",
|
59 |
+
"Mouth",
|
60 |
+
"L-Lip",
|
61 |
+
"U-Lip"
|
62 |
+
]
|
63 |
+
MASK_SOFT_KERNEL = 17
|
64 |
+
MASK_SOFT_ITERATIONS = 10
|
65 |
+
MASK_BLUR_AMOUNT = 0.1
|
66 |
+
MASK_ERODE_AMOUNT = 0.15
|
67 |
+
|
68 |
+
FACE_SWAPPER = None
|
69 |
+
FACE_ANALYSER = None
|
70 |
+
FACE_ENHANCER = None
|
71 |
+
FACE_PARSER = None
|
72 |
+
FACE_ENHANCER_LIST = ["NONE"]
|
73 |
+
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
|
74 |
+
FACE_ENHANCER_LIST.extend(cv2_interpolations)
|
75 |
+
|
76 |
+
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
77 |
+
# Note: Non CUDA users may change settings here
|
78 |
+
|
79 |
+
PROVIDER = ["CPUExecutionProvider"]
|
80 |
+
|
81 |
+
if USE_CUDA:
|
82 |
+
available_providers = onnxruntime.get_available_providers()
|
83 |
+
if "CUDAExecutionProvider" in available_providers:
|
84 |
+
print("\n********** Running on CUDA **********\n")
|
85 |
+
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
86 |
+
else:
|
87 |
+
USE_CUDA = False
|
88 |
+
print("\n********** CUDA unavailable running on CPU **********\n")
|
89 |
+
else:
|
90 |
+
USE_CUDA = False
|
91 |
+
print("\n********** Running on CPU **********\n")
|
92 |
+
|
93 |
+
device = "cuda" if USE_CUDA else "cpu"
|
94 |
+
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
|
95 |
+
|
96 |
+
## ------------------------------ LOAD MODELS ------------------------------
|
97 |
+
|
98 |
+
def load_face_analyser_model(name="buffalo_l"):
|
99 |
+
global FACE_ANALYSER
|
100 |
+
if FACE_ANALYSER is None:
|
101 |
+
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER)
|
102 |
+
FACE_ANALYSER.prepare(
|
103 |
+
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
108 |
+
global FACE_SWAPPER
|
109 |
+
if FACE_SWAPPER is None:
|
110 |
+
batch = int(BATCH_SIZE) if device == "cuda" else 1
|
111 |
+
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)
|
112 |
+
|
113 |
+
|
114 |
+
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
115 |
+
global FACE_PARSER
|
116 |
+
if FACE_PARSER is None:
|
117 |
+
FACE_PARSER = init_parsing_model(path, device=device)
|
118 |
+
|
119 |
+
|
120 |
+
load_face_analyser_model()
|
121 |
+
load_face_swapper_model()
|
122 |
+
|
123 |
+
## ------------------------------ MAIN PROCESS ------------------------------
|
124 |
+
|
125 |
+
|
126 |
+
def process(
|
127 |
+
input_type,
|
128 |
+
image_path,
|
129 |
+
video_path,
|
130 |
+
directory_path,
|
131 |
+
source_path,
|
132 |
+
output_path,
|
133 |
+
output_name,
|
134 |
+
keep_output_sequence,
|
135 |
+
condition,
|
136 |
+
age,
|
137 |
+
distance,
|
138 |
+
face_enhancer_name,
|
139 |
+
enable_face_parser,
|
140 |
+
mask_includes,
|
141 |
+
mask_soft_kernel,
|
142 |
+
mask_soft_iterations,
|
143 |
+
blur_amount,
|
144 |
+
erode_amount,
|
145 |
+
face_scale,
|
146 |
+
enable_laplacian_blend,
|
147 |
+
crop_top,
|
148 |
+
crop_bott,
|
149 |
+
crop_left,
|
150 |
+
crop_right,
|
151 |
+
*specifics,
|
152 |
+
):
|
153 |
+
global WORKSPACE
|
154 |
+
global OUTPUT_FILE
|
155 |
+
global PREVIEW
|
156 |
+
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
|
157 |
+
|
158 |
+
## ------------------------------ GUI UPDATE FUNC ------------------------------
|
159 |
+
|
160 |
+
def ui_before():
|
161 |
+
return (
|
162 |
+
gr.update(visible=True, value=PREVIEW),
|
163 |
+
gr.update(interactive=False),
|
164 |
+
gr.update(interactive=False),
|
165 |
+
gr.update(visible=False),
|
166 |
+
)
|
167 |
+
|
168 |
+
def ui_after():
|
169 |
+
return (
|
170 |
+
gr.update(visible=True, value=PREVIEW),
|
171 |
+
gr.update(interactive=True),
|
172 |
+
gr.update(interactive=True),
|
173 |
+
gr.update(visible=False),
|
174 |
+
)
|
175 |
+
|
176 |
+
def ui_after_vid():
|
177 |
+
return (
|
178 |
+
gr.update(visible=False),
|
179 |
+
gr.update(interactive=True),
|
180 |
+
gr.update(interactive=True),
|
181 |
+
gr.update(value=OUTPUT_FILE, visible=True),
|
182 |
+
)
|
183 |
+
|
184 |
+
start_time = time.time()
|
185 |
+
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
|
186 |
+
get_finsh_text = lambda start_time: f"✔️ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec."
|
187 |
+
|
188 |
+
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
yield "### \n 💊 Loading face analyser model...", *ui_before()
|
193 |
+
load_face_analyser_model()
|
194 |
+
|
195 |
+
yield "### \n 👑 Loading face swapper model...", *ui_before()
|
196 |
+
load_face_swapper_model()
|
197 |
+
|
198 |
+
if face_enhancer_name != "NONE":
|
199 |
+
if face_enhancer_name not in cv2_interpolations:
|
200 |
+
yield f"### \n 🔮 Loading {face_enhancer_name} model...", *ui_before()
|
201 |
+
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
|
202 |
+
else:
|
203 |
+
FACE_ENHANCER = None
|
204 |
+
|
205 |
+
if enable_face_parser:
|
206 |
+
yield "### \n 🧲 Loading face parsing model...", *ui_before()
|
207 |
+
load_face_parser_model()
|
208 |
+
|
209 |
+
includes = mask_regions_to_list(mask_includes)
|
210 |
+
specifics = list(specifics)
|
211 |
+
half = len(specifics) // 2
|
212 |
+
sources = specifics[:half]
|
213 |
+
specifics = specifics[half:]
|
214 |
+
if crop_top > crop_bott:
|
215 |
+
crop_top, crop_bott = crop_bott, crop_top
|
216 |
+
if crop_left > crop_right:
|
217 |
+
crop_left, crop_right = crop_right, crop_left
|
218 |
+
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)
|
219 |
+
|
220 |
+
def swap_process(image_sequence):
|
221 |
+
## ------------------------------ CONTENT CHECK ------------------------------
|
222 |
+
|
223 |
+
|
224 |
+
yield "### \n 📡 Analysing face data...", *ui_before()
|
225 |
+
if condition != "Specific Face":
|
226 |
+
source_data = source_path, age
|
227 |
+
else:
|
228 |
+
source_data = ((sources, specifics), distance)
|
229 |
+
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
|
230 |
+
FACE_ANALYSER,
|
231 |
+
image_sequence,
|
232 |
+
source_data,
|
233 |
+
swap_condition=condition,
|
234 |
+
detect_condition=DETECT_CONDITION,
|
235 |
+
scale=face_scale
|
236 |
+
)
|
237 |
+
|
238 |
+
## ------------------------------ SWAP FUNC ------------------------------
|
239 |
+
|
240 |
+
yield "### \n ⚙️ Generating faces...", *ui_before()
|
241 |
+
preds = []
|
242 |
+
matrs = []
|
243 |
+
count = 0
|
244 |
+
global PREVIEW
|
245 |
+
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
|
246 |
+
preds.extend(batch_pred)
|
247 |
+
matrs.extend(batch_matr)
|
248 |
+
EMPTY_CACHE()
|
249 |
+
count += 1
|
250 |
+
|
251 |
+
if USE_CUDA:
|
252 |
+
image_grid = create_image_grid(batch_pred, size=128)
|
253 |
+
PREVIEW = image_grid[:, :, ::-1]
|
254 |
+
yield f"### \n ⚙️ Generating face Batch {count}", *ui_before()
|
255 |
+
|
256 |
+
## ------------------------------ FACE ENHANCEMENT ------------------------------
|
257 |
+
|
258 |
+
generated_len = len(preds)
|
259 |
+
if face_enhancer_name != "NONE":
|
260 |
+
yield f"### \n 📐 Upscaling faces with {face_enhancer_name}...", *ui_before()
|
261 |
+
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
|
262 |
+
enhancer_model, enhancer_model_runner = FACE_ENHANCER
|
263 |
+
pred = enhancer_model_runner(pred, enhancer_model)
|
264 |
+
preds[idx] = cv2.resize(pred, (512,512))
|
265 |
+
EMPTY_CACHE()
|
266 |
+
|
267 |
+
## ------------------------------ FACE PARSING ------------------------------
|
268 |
+
|
269 |
+
if enable_face_parser:
|
270 |
+
yield "### \n 🖇️ Face-parsing mask...", *ui_before()
|
271 |
+
masks = []
|
272 |
+
count = 0
|
273 |
+
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
|
274 |
+
masks.append(batch_mask)
|
275 |
+
EMPTY_CACHE()
|
276 |
+
count += 1
|
277 |
+
|
278 |
+
if len(batch_mask) > 1:
|
279 |
+
image_grid = create_image_grid(batch_mask, size=128)
|
280 |
+
PREVIEW = image_grid[:, :, ::-1]
|
281 |
+
yield f"### \n ✏️ Face parsing Batch {count}", *ui_before()
|
282 |
+
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
|
283 |
+
else:
|
284 |
+
masks = [None] * generated_len
|
285 |
+
|
286 |
+
## ------------------------------ SPLIT LIST ------------------------------
|
287 |
+
|
288 |
+
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
|
289 |
+
del preds
|
290 |
+
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
|
291 |
+
del matrs
|
292 |
+
split_masks = split_list_by_lengths(masks, num_faces_per_frame)
|
293 |
+
del masks
|
294 |
+
|
295 |
+
## ------------------------------ PASTE-BACK ------------------------------
|
296 |
+
|
297 |
+
yield "### \n 🛠️ Pasting back...", *ui_before()
|
298 |
+
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
|
299 |
+
whole_img_path = frame_img
|
300 |
+
whole_img = cv2.imread(whole_img_path)
|
301 |
+
blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
|
302 |
+
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
|
303 |
+
p = cv2.resize(p, (512,512))
|
304 |
+
mask = cv2.resize(mask, (512,512)) if mask is not None else None
|
305 |
+
m /= 0.25
|
306 |
+
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
|
307 |
+
cv2.imwrite(whole_img_path, whole_img)
|
308 |
+
|
309 |
+
def concurrent_post_process(image_sequence, *args):
|
310 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
311 |
+
futures = []
|
312 |
+
for idx, frame_img in enumerate(image_sequence):
|
313 |
+
future = executor.submit(post_process, idx, frame_img, *args)
|
314 |
+
futures.append(future)
|
315 |
+
|
316 |
+
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
|
317 |
+
result = future.result()
|
318 |
+
|
319 |
+
concurrent_post_process(
|
320 |
+
image_sequence,
|
321 |
+
split_preds,
|
322 |
+
split_matrs,
|
323 |
+
split_masks,
|
324 |
+
enable_laplacian_blend,
|
325 |
+
crop_mask,
|
326 |
+
blur_amount,
|
327 |
+
erode_amount
|
328 |
+
)
|
329 |
+
|
330 |
+
|
331 |
+
## ------------------------------ IMAGE ------------------------------
|
332 |
+
|
333 |
+
if input_type == "Image":
|
334 |
+
target = cv2.imread(image_path)
|
335 |
+
output_file = os.path.join(output_path, output_name + ".png")
|
336 |
+
cv2.imwrite(output_file, target)
|
337 |
+
|
338 |
+
for info_update in swap_process([output_file]):
|
339 |
+
yield info_update
|
340 |
+
|
341 |
+
OUTPUT_FILE = output_file
|
342 |
+
WORKSPACE = output_path
|
343 |
+
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
|
344 |
+
|
345 |
+
yield get_finsh_text(start_time), *ui_after()
|
346 |
+
|
347 |
+
## ------------------------------ VIDEO ------------------------------
|
348 |
+
|
349 |
+
elif input_type == "Video":
|
350 |
+
temp_path = os.path.join(output_path, output_name, "sequence")
|
351 |
+
os.makedirs(temp_path, exist_ok=True)
|
352 |
+
|
353 |
+
yield "### \n 💽 Extracting video frames...", *ui_before()
|
354 |
+
image_sequence = []
|
355 |
+
cap = cv2.VideoCapture(video_path)
|
356 |
+
curr_idx = 0
|
357 |
+
while True:
|
358 |
+
ret, frame = cap.read()
|
359 |
+
if not ret:break
|
360 |
+
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
|
361 |
+
cv2.imwrite(frame_path, frame)
|
362 |
+
image_sequence.append(frame_path)
|
363 |
+
curr_idx += 1
|
364 |
+
cap.release()
|
365 |
+
cv2.destroyAllWindows()
|
366 |
+
|
367 |
+
for info_update in swap_process(image_sequence):
|
368 |
+
yield info_update
|
369 |
+
|
370 |
+
yield "### \n 🔗 Merging sequence...", *ui_before()
|
371 |
+
output_video_path = os.path.join(output_path, output_name + ".mp4")
|
372 |
+
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
|
373 |
+
|
374 |
+
if os.path.exists(temp_path) and not keep_output_sequence:
|
375 |
+
yield "### \n 🚽 Removing temporary files...", *ui_before()
|
376 |
+
shutil.rmtree(temp_path)
|
377 |
+
|
378 |
+
WORKSPACE = output_path
|
379 |
+
OUTPUT_FILE = output_video_path
|
380 |
+
|
381 |
+
yield get_finsh_text(start_time), *ui_after_vid()
|
382 |
+
|
383 |
+
## ------------------------------ DIRECTORY ------------------------------
|
384 |
+
|
385 |
+
elif input_type == "Directory":
|
386 |
+
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
|
387 |
+
temp_path = os.path.join(output_path, output_name)
|
388 |
+
if os.path.exists(temp_path):
|
389 |
+
shutil.rmtree(temp_path)
|
390 |
+
os.mkdir(temp_path)
|
391 |
+
|
392 |
+
file_paths =[]
|
393 |
+
for file_path in glob.glob(os.path.join(directory_path, "*")):
|
394 |
+
if any(file_path.lower().endswith(ext) for ext in extensions):
|
395 |
+
img = cv2.imread(file_path)
|
396 |
+
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
|
397 |
+
cv2.imwrite(new_file_path, img)
|
398 |
+
file_paths.append(new_file_path)
|
399 |
+
|
400 |
+
for info_update in swap_process(file_paths):
|
401 |
+
yield info_update
|
402 |
+
|
403 |
+
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1]
|
404 |
+
WORKSPACE = temp_path
|
405 |
+
OUTPUT_FILE = file_paths[-1]
|
406 |
+
|
407 |
+
yield get_finsh_text(start_time), *ui_after()
|
408 |
+
|
409 |
+
## ------------------------------ STREAM ------------------------------
|
410 |
+
|
411 |
+
elif input_type == "Stream":
|
412 |
+
pass
|
413 |
+
|
414 |
+
|
415 |
+
## ------------------------------ GRADIO FUNC ------------------------------
|
416 |
+
|
417 |
+
|
418 |
+
def update_radio(value):
|
419 |
+
if value == "Image":
|
420 |
+
return (
|
421 |
+
gr.update(visible=True),
|
422 |
+
gr.update(visible=False),
|
423 |
+
gr.update(visible=False),
|
424 |
+
)
|
425 |
+
elif value == "Video":
|
426 |
+
return (
|
427 |
+
gr.update(visible=False),
|
428 |
+
gr.update(visible=True),
|
429 |
+
gr.update(visible=False),
|
430 |
+
)
|
431 |
+
elif value == "Directory":
|
432 |
+
return (
|
433 |
+
gr.update(visible=False),
|
434 |
+
gr.update(visible=False),
|
435 |
+
gr.update(visible=True),
|
436 |
+
)
|
437 |
+
elif value == "Stream":
|
438 |
+
return (
|
439 |
+
gr.update(visible=False),
|
440 |
+
gr.update(visible=False),
|
441 |
+
gr.update(visible=True),
|
442 |
+
)
|
443 |
+
|
444 |
+
|
445 |
+
def swap_option_changed(value):
|
446 |
+
if value.startswith("Age"):
|
447 |
+
return (
|
448 |
+
gr.update(visible=True),
|
449 |
+
gr.update(visible=False),
|
450 |
+
gr.update(visible=True),
|
451 |
+
)
|
452 |
+
elif value == "Specific Face":
|
453 |
+
return (
|
454 |
+
gr.update(visible=False),
|
455 |
+
gr.update(visible=True),
|
456 |
+
gr.update(visible=False),
|
457 |
+
)
|
458 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
459 |
+
|
460 |
+
|
461 |
+
def video_changed(video_path):
|
462 |
+
sliders_update = gr.Slider.update
|
463 |
+
button_update = gr.Button.update
|
464 |
+
number_update = gr.Number.update
|
465 |
+
|
466 |
+
if video_path is None:
|
467 |
+
return (
|
468 |
+
sliders_update(minimum=0, maximum=0, value=0),
|
469 |
+
sliders_update(minimum=1, maximum=1, value=1),
|
470 |
+
number_update(value=1),
|
471 |
+
)
|
472 |
+
try:
|
473 |
+
clip = VideoFileClip(video_path)
|
474 |
+
fps = clip.fps
|
475 |
+
total_frames = clip.reader.nframes
|
476 |
+
clip.close()
|
477 |
+
return (
|
478 |
+
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True),
|
479 |
+
sliders_update(
|
480 |
+
minimum=0, maximum=total_frames, value=total_frames, interactive=True
|
481 |
+
),
|
482 |
+
number_update(value=fps),
|
483 |
+
)
|
484 |
+
except:
|
485 |
+
return (
|
486 |
+
sliders_update(value=0),
|
487 |
+
sliders_update(value=0),
|
488 |
+
number_update(value=1),
|
489 |
+
)
|
490 |
+
|
491 |
+
|
492 |
+
def analyse_settings_changed(detect_condition, detection_size, detection_threshold):
|
493 |
+
yield "### \n 💡 Applying new values..."
|
494 |
+
global FACE_ANALYSER
|
495 |
+
global DETECT_CONDITION
|
496 |
+
DETECT_CONDITION = detect_condition
|
497 |
+
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
|
498 |
+
FACE_ANALYSER.prepare(
|
499 |
+
ctx_id=0,
|
500 |
+
det_size=(int(detection_size), int(detection_size)),
|
501 |
+
det_thresh=float(detection_threshold),
|
502 |
+
)
|
503 |
+
yield f"### \n ✔️ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}"
|
504 |
+
|
505 |
+
|
506 |
+
def stop_running():
|
507 |
+
global STREAMER
|
508 |
+
if hasattr(STREAMER, "stop"):
|
509 |
+
STREAMER.stop()
|
510 |
+
STREAMER = None
|
511 |
+
return "Cancelled"
|
512 |
+
|
513 |
+
|
514 |
+
def slider_changed(show_frame, video_path, frame_index):
|
515 |
+
if not show_frame:
|
516 |
+
return None, None
|
517 |
+
if video_path is None:
|
518 |
+
return None, None
|
519 |
+
clip = VideoFileClip(video_path)
|
520 |
+
frame = clip.get_frame(frame_index / clip.fps)
|
521 |
+
frame_array = np.array(frame)
|
522 |
+
clip.close()
|
523 |
+
return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
|
524 |
+
visible=False
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame):
|
529 |
+
yield video_path, f"### \n 🛠️ Trimming video frame {start_frame} to {stop_frame}..."
|
530 |
+
try:
|
531 |
+
output_path = os.path.join(output_path, output_name)
|
532 |
+
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame)
|
533 |
+
yield trimmed_video, "### \n ✔️ Video trimmed and reloaded."
|
534 |
+
except Exception as e:
|
535 |
+
print(e)
|
536 |
+
yield video_path, "### \n ❌ Video trimming failed. See console for more info."
|
537 |
+
|
538 |
+
|
539 |
+
## ------------------------------ GRADIO GUI ------------------------------
|
540 |
+
|
541 |
+
css = """
|
542 |
+
footer{display:none !important}
|
543 |
+
"""
|
544 |
+
|
545 |
+
with gr.Blocks(css=css) as interface:
|
546 |
+
gr.Markdown("# 🧸 Deepfake Faceswap")
|
547 |
+
gr.Markdown("### 📥 insightface inswapper bypass NSFW.")
|
548 |
+
with gr.Row():
|
549 |
+
with gr.Row():
|
550 |
+
with gr.Column(scale=0.4):
|
551 |
+
with gr.Tab("⚖️ Swap Condition"):
|
552 |
+
swap_option = gr.Dropdown(
|
553 |
+
swap_options_list,
|
554 |
+
info="Choose which face or faces in the target image to swap.",
|
555 |
+
multiselect=False,
|
556 |
+
show_label=False,
|
557 |
+
value=swap_options_list[0],
|
558 |
+
interactive=True,
|
559 |
+
)
|
560 |
+
age = gr.Number(
|
561 |
+
value=25, label="Value", interactive=True, visible=False
|
562 |
+
)
|
563 |
+
|
564 |
+
with gr.Tab("🎛️ Detection Settings"):
|
565 |
+
detect_condition_dropdown = gr.Dropdown(
|
566 |
+
detect_conditions,
|
567 |
+
label="Condition",
|
568 |
+
value=DETECT_CONDITION,
|
569 |
+
interactive=True,
|
570 |
+
info="This condition is only used when multiple faces are detected on source or specific image.",
|
571 |
+
)
|
572 |
+
detection_size = gr.Number(
|
573 |
+
label="Detection Size", value=DETECT_SIZE, interactive=True
|
574 |
+
)
|
575 |
+
detection_threshold = gr.Number(
|
576 |
+
label="Detection Threshold",
|
577 |
+
value=DETECT_THRESH,
|
578 |
+
interactive=True,
|
579 |
+
)
|
580 |
+
apply_detection_settings = gr.Button("Apply settings")
|
581 |
+
|
582 |
+
with gr.Tab("♻️ Output Settings"):
|
583 |
+
output_directory = gr.Text(
|
584 |
+
label="Output Directory",
|
585 |
+
value=DEF_OUTPUT_PATH,
|
586 |
+
interactive=True,
|
587 |
+
)
|
588 |
+
output_name = gr.Text(
|
589 |
+
label="Output Name", value="Result", interactive=True
|
590 |
+
)
|
591 |
+
keep_output_sequence = gr.Checkbox(
|
592 |
+
label="Keep output sequence", value=False, interactive=True
|
593 |
+
)
|
594 |
+
|
595 |
+
with gr.Tab("💎 Other Settings"):
|
596 |
+
face_scale = gr.Slider(
|
597 |
+
label="Face Scale",
|
598 |
+
minimum=0,
|
599 |
+
maximum=2,
|
600 |
+
value=1,
|
601 |
+
interactive=True,
|
602 |
+
)
|
603 |
+
|
604 |
+
face_enhancer_name = gr.Dropdown(
|
605 |
+
FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
|
606 |
+
)
|
607 |
+
|
608 |
+
with gr.Accordion("Advanced Mask", open=False):
|
609 |
+
enable_face_parser_mask = gr.Checkbox(
|
610 |
+
label="Enable Face Parsing",
|
611 |
+
value=False,
|
612 |
+
interactive=True,
|
613 |
+
)
|
614 |
+
|
615 |
+
mask_include = gr.Dropdown(
|
616 |
+
mask_regions.keys(),
|
617 |
+
value=MASK_INCLUDE,
|
618 |
+
multiselect=True,
|
619 |
+
label="Include",
|
620 |
+
interactive=True,
|
621 |
+
)
|
622 |
+
mask_soft_kernel = gr.Number(
|
623 |
+
label="Soft Erode Kernel",
|
624 |
+
value=MASK_SOFT_KERNEL,
|
625 |
+
minimum=3,
|
626 |
+
interactive=True,
|
627 |
+
visible = False
|
628 |
+
)
|
629 |
+
mask_soft_iterations = gr.Number(
|
630 |
+
label="Soft Erode Iterations",
|
631 |
+
value=MASK_SOFT_ITERATIONS,
|
632 |
+
minimum=0,
|
633 |
+
interactive=True,
|
634 |
+
|
635 |
+
)
|
636 |
+
|
637 |
+
|
638 |
+
with gr.Accordion("Crop Mask", open=False):
|
639 |
+
crop_top = gr.Slider(label="Top", minimum=0, maximum=511, value=0, step=1, interactive=True)
|
640 |
+
crop_bott = gr.Slider(label="Bottom", minimum=0, maximum=511, value=511, step=1, interactive=True)
|
641 |
+
crop_left = gr.Slider(label="Left", minimum=0, maximum=511, value=0, step=1, interactive=True)
|
642 |
+
crop_right = gr.Slider(label="Right", minimum=0, maximum=511, value=511, step=1, interactive=True)
|
643 |
+
|
644 |
+
|
645 |
+
erode_amount = gr.Slider(
|
646 |
+
label="Mask Erode",
|
647 |
+
minimum=0,
|
648 |
+
maximum=1,
|
649 |
+
value=MASK_ERODE_AMOUNT,
|
650 |
+
step=0.05,
|
651 |
+
interactive=True,
|
652 |
+
)
|
653 |
+
|
654 |
+
blur_amount = gr.Slider(
|
655 |
+
label="Mask Blur",
|
656 |
+
minimum=0,
|
657 |
+
maximum=1,
|
658 |
+
value=MASK_BLUR_AMOUNT,
|
659 |
+
step=0.05,
|
660 |
+
interactive=True,
|
661 |
+
)
|
662 |
+
|
663 |
+
enable_laplacian_blend = gr.Checkbox(
|
664 |
+
label="Laplacian Blending",
|
665 |
+
value=True,
|
666 |
+
interactive=True,
|
667 |
+
)
|
668 |
+
|
669 |
+
|
670 |
+
source_image_input = gr.Image(
|
671 |
+
label="Source face", type="filepath", interactive=True
|
672 |
+
)
|
673 |
+
|
674 |
+
with gr.Box(visible=False) as specific_face:
|
675 |
+
for i in range(NUM_OF_SRC_SPECIFIC):
|
676 |
+
idx = i + 1
|
677 |
+
code = "\n"
|
678 |
+
code += f"with gr.Tab(label='({idx})'):"
|
679 |
+
code += "\n\twith gr.Row():"
|
680 |
+
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')"
|
681 |
+
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')"
|
682 |
+
exec(code)
|
683 |
+
|
684 |
+
distance_slider = gr.Slider(
|
685 |
+
minimum=0,
|
686 |
+
maximum=2,
|
687 |
+
value=0.6,
|
688 |
+
interactive=True,
|
689 |
+
label="Distance",
|
690 |
+
info="Lower distance is more similar and higher distance is less similar to the target face.",
|
691 |
+
)
|
692 |
+
|
693 |
+
with gr.Group():
|
694 |
+
input_type = gr.Radio(
|
695 |
+
["Image", "Video"],
|
696 |
+
label="Target Type",
|
697 |
+
value="Image",
|
698 |
+
)
|
699 |
+
|
700 |
+
with gr.Box(visible=True) as input_image_group:
|
701 |
+
image_input = gr.Image(
|
702 |
+
label="Target Image", interactive=True, type="filepath"
|
703 |
+
)
|
704 |
+
|
705 |
+
with gr.Box(visible=False) as input_video_group:
|
706 |
+
vid_widget = gr.Video if USE_COLAB else gr.Text
|
707 |
+
video_input = gr.Video(
|
708 |
+
label="Target Video", interactive=True
|
709 |
+
)
|
710 |
+
with gr.Accordion("🎨 Trim video", open=False):
|
711 |
+
with gr.Column():
|
712 |
+
with gr.Row():
|
713 |
+
set_slider_range_btn = gr.Button(
|
714 |
+
"Set frame range", interactive=True
|
715 |
+
)
|
716 |
+
show_trim_preview_btn = gr.Checkbox(
|
717 |
+
label="Show frame when slider change",
|
718 |
+
value=True,
|
719 |
+
interactive=True,
|
720 |
+
)
|
721 |
+
|
722 |
+
video_fps = gr.Number(
|
723 |
+
value=30,
|
724 |
+
interactive=False,
|
725 |
+
label="Fps",
|
726 |
+
visible=False,
|
727 |
+
)
|
728 |
+
start_frame = gr.Slider(
|
729 |
+
minimum=0,
|
730 |
+
maximum=1,
|
731 |
+
value=0,
|
732 |
+
step=1,
|
733 |
+
interactive=True,
|
734 |
+
label="Start Frame",
|
735 |
+
info="",
|
736 |
+
)
|
737 |
+
end_frame = gr.Slider(
|
738 |
+
minimum=0,
|
739 |
+
maximum=1,
|
740 |
+
value=1,
|
741 |
+
step=1,
|
742 |
+
interactive=True,
|
743 |
+
label="End Frame",
|
744 |
+
info="",
|
745 |
+
)
|
746 |
+
trim_and_reload_btn = gr.Button(
|
747 |
+
"Trim and Reload", interactive=True
|
748 |
+
)
|
749 |
+
|
750 |
+
with gr.Box(visible=False) as input_directory_group:
|
751 |
+
direc_input = gr.Text(label="Path", interactive=True)
|
752 |
+
|
753 |
+
with gr.Column(scale=0.6):
|
754 |
+
info = gr.Markdown(value="...")
|
755 |
+
|
756 |
+
with gr.Row():
|
757 |
+
swap_button = gr.Button("🎯 Swap", variant="primary")
|
758 |
+
cancel_button = gr.Button("❌ Cancel")
|
759 |
+
|
760 |
+
preview_image = gr.Image(label="Output", interactive=False)
|
761 |
+
preview_video = gr.Video(
|
762 |
+
label="Output", interactive=False, visible=False
|
763 |
+
)
|
764 |
+
|
765 |
+
with gr.Row():
|
766 |
+
output_directory_button = gr.Button(
|
767 |
+
"💌", interactive=False, visible=False
|
768 |
+
)
|
769 |
+
output_video_button = gr.Button(
|
770 |
+
"📽️", interactive=False, visible=False
|
771 |
+
)
|
772 |
+
|
773 |
+
with gr.Box():
|
774 |
+
with gr.Row():
|
775 |
+
gr.Markdown(
|
776 |
+
"### [🎭 Sponsor]"
|
777 |
+
)
|
778 |
+
gr.Markdown(
|
779 |
+
"### [🖥️ Source code](https://huggingface.co/spaces/victorisgeek/SwapFace2Pon)"
|
780 |
+
)
|
781 |
+
gr.Markdown(
|
782 |
+
"### [ 🧩 Playground](https://huggingface.co/spaces/victorisgeek/SwapFace2Pon)"
|
783 |
+
)
|
784 |
+
gr.Markdown(
|
785 |
+
"### [📸 Run in Colab](https://colab.research.google.com/github/victorgeel/FaceSwapNoNfsw/blob/main/SwapFace.ipynb)"
|
786 |
+
)
|
787 |
+
gr.Markdown(
|
788 |
+
"### [🤗 Modified Version](https://github.com/victorgeel/FaceSwapNoNfsw)"
|
789 |
+
)
|
790 |
+
|
791 |
+
## ------------------------------ GRADIO EVENTS ------------------------------
|
792 |
+
|
793 |
+
set_slider_range_event = set_slider_range_btn.click(
|
794 |
+
video_changed,
|
795 |
+
inputs=[video_input],
|
796 |
+
outputs=[start_frame, end_frame, video_fps],
|
797 |
+
)
|
798 |
+
|
799 |
+
trim_and_reload_event = trim_and_reload_btn.click(
|
800 |
+
fn=trim_and_reload,
|
801 |
+
inputs=[video_input, output_directory, output_name, start_frame, end_frame],
|
802 |
+
outputs=[video_input, info],
|
803 |
+
)
|
804 |
+
|
805 |
+
start_frame_event = start_frame.release(
|
806 |
+
fn=slider_changed,
|
807 |
+
inputs=[show_trim_preview_btn, video_input, start_frame],
|
808 |
+
outputs=[preview_image, preview_video],
|
809 |
+
show_progress=True,
|
810 |
+
)
|
811 |
+
|
812 |
+
end_frame_event = end_frame.release(
|
813 |
+
fn=slider_changed,
|
814 |
+
inputs=[show_trim_preview_btn, video_input, end_frame],
|
815 |
+
outputs=[preview_image, preview_video],
|
816 |
+
show_progress=True,
|
817 |
+
)
|
818 |
+
|
819 |
+
input_type.change(
|
820 |
+
update_radio,
|
821 |
+
inputs=[input_type],
|
822 |
+
outputs=[input_image_group, input_video_group, input_directory_group],
|
823 |
+
)
|
824 |
+
swap_option.change(
|
825 |
+
swap_option_changed,
|
826 |
+
inputs=[swap_option],
|
827 |
+
outputs=[age, specific_face, source_image_input],
|
828 |
+
)
|
829 |
+
|
830 |
+
apply_detection_settings.click(
|
831 |
+
analyse_settings_changed,
|
832 |
+
inputs=[detect_condition_dropdown, detection_size, detection_threshold],
|
833 |
+
outputs=[info],
|
834 |
+
)
|
835 |
+
|
836 |
+
src_specific_inputs = []
|
837 |
+
gen_variable_txt = ",".join(
|
838 |
+
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
|
839 |
+
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
|
840 |
+
)
|
841 |
+
exec(f"src_specific_inputs = ({gen_variable_txt})")
|
842 |
+
swap_inputs = [
|
843 |
+
input_type,
|
844 |
+
image_input,
|
845 |
+
video_input,
|
846 |
+
direc_input,
|
847 |
+
source_image_input,
|
848 |
+
output_directory,
|
849 |
+
output_name,
|
850 |
+
keep_output_sequence,
|
851 |
+
swap_option,
|
852 |
+
age,
|
853 |
+
distance_slider,
|
854 |
+
face_enhancer_name,
|
855 |
+
enable_face_parser_mask,
|
856 |
+
mask_include,
|
857 |
+
mask_soft_kernel,
|
858 |
+
mask_soft_iterations,
|
859 |
+
blur_amount,
|
860 |
+
erode_amount,
|
861 |
+
face_scale,
|
862 |
+
enable_laplacian_blend,
|
863 |
+
crop_top,
|
864 |
+
crop_bott,
|
865 |
+
crop_left,
|
866 |
+
crop_right,
|
867 |
+
*src_specific_inputs,
|
868 |
+
]
|
869 |
+
|
870 |
+
swap_outputs = [
|
871 |
+
info,
|
872 |
+
preview_image,
|
873 |
+
output_directory_button,
|
874 |
+
output_video_button,
|
875 |
+
preview_video,
|
876 |
+
]
|
877 |
+
|
878 |
+
swap_event = swap_button.click(
|
879 |
+
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
|
880 |
+
)
|
881 |
+
|
882 |
+
cancel_button.click(
|
883 |
+
fn=stop_running,
|
884 |
+
inputs=None,
|
885 |
+
outputs=[info],
|
886 |
+
cancels=[
|
887 |
+
swap_event,
|
888 |
+
trim_and_reload_event,
|
889 |
+
set_slider_range_event,
|
890 |
+
start_frame_event,
|
891 |
+
end_frame_event,
|
892 |
+
],
|
893 |
+
show_progress=True,
|
894 |
+
)
|
895 |
+
output_directory_button.click(
|
896 |
+
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
|
897 |
+
)
|
898 |
+
output_video_button.click(
|
899 |
+
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None
|
900 |
+
)
|
901 |
+
|
902 |
+
if __name__ == "__main__":
|
903 |
+
if USE_COLAB:
|
904 |
+
print("Running in colab mode")
|
905 |
+
|
906 |
+
interface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB)
|