Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer locally in bfloat16 precision | |
model_name = "vietdata/llama32_1b_pub" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, # Load model in bfloat16 precision | |
device_map="auto" if torch.cuda.is_available() else None, # Automatically map to available devices | |
) | |
# Define the respond function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
from transformers import TextGenerationPipeline | |
# Build the conversation context | |
prompt = system_message + "\n" | |
for user_msg, bot_msg in history: | |
if user_msg: | |
prompt += f"User: {user_msg}\n" | |
if bot_msg: | |
prompt += f"Bot: {bot_msg}\n" | |
prompt += f"User: {message}\nBot:" | |
# Set up a text generation pipeline | |
pipe = TextGenerationPipeline( | |
model=model, | |
tokenizer=tokenizer, | |
device=torch.cuda.current_device() if torch.cuda.is_available() else -1 | |
) | |
# Generate the response | |
response = pipe( | |
prompt, | |
max_length=len(prompt) + max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id | |
)[0]["generated_text"] | |
# Extract the generated part only | |
generated_response = response[len(prompt):] | |
yield generated_response | |
# Gradio app definition | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |