umair894 commited on
Commit
a646275
·
verified ·
1 Parent(s): c51d61b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -49
app.py CHANGED
@@ -1,63 +1,93 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
 
 
 
 
 
 
 
60
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from unsloth import FastLanguageModel
4
+ from transformers import TextStreamer
5
+ from unsloth.chat_templates import get_chat_template
6
 
7
+ # Initialize the model
8
+ max_seq_length = 2048
9
+ dtype = None
10
+ load_in_4bit = True
11
 
12
+ model, tokenizer = FastLanguageModel.from_pretrained(
13
+ model_name="umair894/llama3",
14
+ max_seq_length=max_seq_length,
15
+ dtype=dtype,
16
+ load_in_4bit=load_in_4bit,
17
+ )
18
 
19
+ tokenizer = get_chat_template(
20
+ tokenizer,
21
+ chat_template="llama-3",
22
+ mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"},
23
+ map_eos_token=True,
24
+ )
 
 
 
25
 
26
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
 
 
 
 
27
 
28
+ # VIKK introduction prompt
29
+ vikk_intro = """Consider you self a legal assistant in USA and your name is VIKK. You are very knowledgeable about all aspects of the law...
30
+ """
31
+
32
+ # Function to get chat response
33
+ def get_response(message, history, system_message, max_tokens, temperature, top_p):
34
+ messages = [{"role": "system", "content": system_message}] if system_message else []
35
+ if not history:
36
+ history = [{"role": "assistant", "content": vikk_intro}]
37
+
38
+ for msg in history:
39
+ if msg[0]:
40
+ messages.append({"role": "user", "content": msg[0]})
41
+ if msg[1]:
42
+ messages.append({"role": "assistant", "content": msg[1]})
43
+
44
  messages.append({"role": "user", "content": message})
45
 
46
+ formatted_messages = [{"from": "assistant", "value": vikk_intro}]
47
+ for msg in messages[1:]:
48
+ role = "human" if msg["role"] == "user" else "assistant"
49
+ formatted_messages.append({"from": role, "value": msg["content"]})
50
 
51
+ inputs = tokenizer.apply_chat_template(
52
+ formatted_messages,
53
+ tokenize=True,
54
+ add_generation_prompt=True,
55
+ return_tensors="pt",
56
+ ).to("cuda")
 
 
57
 
58
+ text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
59
+
60
+ output = ""
61
+ for out in model.generate(input_ids=inputs["input_ids"], streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True):
62
+ output += out
63
 
64
+ response = tokenizer.decode(output, skip_special_tokens=True).split(">>> Assistant: ")[-1].strip()
65
+
66
+ return response
67
+
68
+ # Gradio interface
69
+ with gr.Blocks() as demo:
70
+ gr.Markdown("# Chatbot Interface")
71
+
72
+ with gr.Row():
73
+ with gr.Column():
74
+ system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
75
+ max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
76
+ temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
77
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
78
+
79
+ with gr.Column():
80
+ chatbot = gr.Chatbot()
81
+
82
+ user_input = gr.Textbox(label="You:")
83
+ send_button = gr.Button("Send")
84
+
85
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
86
+ response = get_response(message, history, system_message, max_tokens, temperature, top_p)
87
+ history.append((message, response))
88
+ return history
89
 
90
+ send_button.click(respond, [user_input, chatbot, system_message, max_tokens, temperature, top_p], chatbot)
91
 
92
  if __name__ == "__main__":
93
+ demo.launch()