Spaces:
Paused
Paused
import torch | |
from .sd_unet import SDUNetStateDictConverter, SDUNet | |
from .sd_text_encoder import SDTextEncoderStateDictConverter, SDTextEncoder | |
class SDLoRA: | |
def __init__(self): | |
pass | |
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0, device="cuda"): | |
special_keys = { | |
"down.blocks": "down_blocks", | |
"up.blocks": "up_blocks", | |
"mid.block": "mid_block", | |
"proj.in": "proj_in", | |
"proj.out": "proj_out", | |
"transformer.blocks": "transformer_blocks", | |
"to.q": "to_q", | |
"to.k": "to_k", | |
"to.v": "to_v", | |
"to.out": "to_out", | |
} | |
state_dict_ = {} | |
for key in state_dict: | |
if ".lora_up" not in key: | |
continue | |
if not key.startswith(lora_prefix): | |
continue | |
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16) | |
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16) | |
if len(weight_up.shape) == 4: | |
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32) | |
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32) | |
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
else: | |
lora_weight = alpha * torch.mm(weight_up, weight_down) | |
target_name = key.split(".")[0].replace("_", ".")[len(lora_prefix):] + ".weight" | |
for special_key in special_keys: | |
target_name = target_name.replace(special_key, special_keys[special_key]) | |
state_dict_[target_name] = lora_weight.cpu() | |
return state_dict_ | |
def add_lora_to_unet(self, unet: SDUNet, state_dict_lora, alpha=1.0, device="cuda"): | |
state_dict_unet = unet.state_dict() | |
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix="lora_unet_", alpha=alpha, device=device) | |
state_dict_lora = SDUNetStateDictConverter().from_diffusers(state_dict_lora) | |
if len(state_dict_lora) > 0: | |
for name in state_dict_lora: | |
state_dict_unet[name] += state_dict_lora[name].to(device=device) | |
unet.load_state_dict(state_dict_unet) | |
def add_lora_to_text_encoder(self, text_encoder: SDTextEncoder, state_dict_lora, alpha=1.0, device="cuda"): | |
state_dict_text_encoder = text_encoder.state_dict() | |
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix="lora_te_", alpha=alpha, device=device) | |
state_dict_lora = SDTextEncoderStateDictConverter().from_diffusers(state_dict_lora) | |
if len(state_dict_lora) > 0: | |
for name in state_dict_lora: | |
state_dict_text_encoder[name] += state_dict_lora[name].to(device=device) | |
text_encoder.load_state_dict(state_dict_text_encoder) | |