Spaces:
Paused
Paused
import torch | |
from einops import rearrange, repeat | |
class TileWorker: | |
def __init__(self): | |
pass | |
def mask(self, height, width, border_width): | |
# Create a mask with shape (height, width). | |
# The centre area is filled with 1, and the border line is filled with values in range (0, 1]. | |
x = torch.arange(height).repeat(width, 1).T | |
y = torch.arange(width).repeat(height, 1) | |
mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values | |
mask = (mask / border_width).clip(0, 1) | |
return mask | |
def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype): | |
# Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num) | |
batch_size, channel, _, _ = model_input.shape | |
model_input = model_input.to(device=tile_device, dtype=tile_dtype) | |
unfold_operator = torch.nn.Unfold( | |
kernel_size=(tile_size, tile_size), | |
stride=(tile_stride, tile_stride) | |
) | |
model_input = unfold_operator(model_input) | |
model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1)) | |
return model_input | |
def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype): | |
# Call y=forward_fn(x) for each tile | |
tile_num = model_input.shape[-1] | |
model_output_stack = [] | |
for tile_id in range(0, tile_num, tile_batch_size): | |
# process input | |
tile_id_ = min(tile_id + tile_batch_size, tile_num) | |
x = model_input[:, :, :, :, tile_id: tile_id_] | |
x = x.to(device=inference_device, dtype=inference_dtype) | |
x = rearrange(x, "b c h w n -> (n b) c h w") | |
# process output | |
y = forward_fn(x) | |
y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id) | |
y = y.to(device=tile_device, dtype=tile_dtype) | |
model_output_stack.append(y) | |
model_output = torch.concat(model_output_stack, dim=-1) | |
return model_output | |
def io_scale(self, model_output, tile_size): | |
# Determine the size modification happend in forward_fn | |
# We only consider the same scale on height and width. | |
io_scale = model_output.shape[2] / tile_size | |
return io_scale | |
def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype): | |
# The reversed function of tile | |
mask = self.mask(tile_size, tile_size, border_width) | |
mask = mask.to(device=tile_device, dtype=tile_dtype) | |
mask = rearrange(mask, "h w -> 1 1 h w 1") | |
model_output = model_output * mask | |
fold_operator = torch.nn.Fold( | |
output_size=(height, width), | |
kernel_size=(tile_size, tile_size), | |
stride=(tile_stride, tile_stride) | |
) | |
mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1]) | |
model_output = rearrange(model_output, "b c h w n -> b (c h w) n") | |
model_output = fold_operator(model_output) / fold_operator(mask) | |
return model_output | |
def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None): | |
# Prepare | |
inference_device, inference_dtype = model_input.device, model_input.dtype | |
height, width = model_input.shape[2], model_input.shape[3] | |
border_width = int(tile_stride*0.5) if border_width is None else border_width | |
# tile | |
model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype) | |
# inference | |
model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype) | |
# resize | |
io_scale = self.io_scale(model_output, tile_size) | |
height, width = int(height*io_scale), int(width*io_scale) | |
tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale) | |
border_width = int(border_width*io_scale) | |
# untile | |
model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype) | |
# Done! | |
model_output = model_output.to(device=inference_device, dtype=inference_dtype) | |
return model_output |