Spaces:
Running
Running
Upload 3 files
Browse files- app/webui/app.py +277 -244
- app/webui/patch.py +33 -1
- app/webui/process.py +213 -213
app/webui/app.py
CHANGED
@@ -1,245 +1,278 @@
|
|
1 |
-
import sys
|
2 |
-
import os
|
3 |
-
|
4 |
-
# Add the project root to the Python path
|
5 |
-
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
|
6 |
-
sys.path.insert(0, project_root)
|
7 |
-
|
8 |
-
import re
|
9 |
-
import gradio as gr
|
10 |
-
from
|
11 |
-
from
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"
|
80 |
-
"
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
return gr.update(visible =
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
"""
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
}
|
145 |
-
.menu_btn
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
label="
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
value=
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
demo.queue(api_open=False).launch(show_api=False, share=False)
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
|
4 |
+
# Add the project root to the Python path
|
5 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
|
6 |
+
sys.path.insert(0, project_root)
|
7 |
+
|
8 |
+
import re
|
9 |
+
import gradio as gr
|
10 |
+
from glob import glob
|
11 |
+
from app.webui.process import model_load, diff_texts, translator, translator_sec
|
12 |
+
from llama_index.core import SimpleDirectoryReader
|
13 |
+
|
14 |
+
def huanik(
|
15 |
+
endpoint: str,
|
16 |
+
model: str,
|
17 |
+
api_key: str,
|
18 |
+
choice: str,
|
19 |
+
endpoint2: str,
|
20 |
+
model2: str,
|
21 |
+
api_key2: str,
|
22 |
+
source_lang: str,
|
23 |
+
target_lang: str,
|
24 |
+
source_text: str,
|
25 |
+
country: str,
|
26 |
+
max_tokens: int,
|
27 |
+
context_window: int,
|
28 |
+
num_output: int,
|
29 |
+
rpm: int,
|
30 |
+
):
|
31 |
+
|
32 |
+
if not source_text or source_lang == target_lang:
|
33 |
+
raise gr.Error("Please check that the content or options are entered correctly.")
|
34 |
+
|
35 |
+
try:
|
36 |
+
model_load(endpoint, model, api_key, context_window, num_output, rpm)
|
37 |
+
except Exception as e:
|
38 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
39 |
+
|
40 |
+
source_text = re.sub(r'(?m)^\s*$\n?', '', source_text)
|
41 |
+
|
42 |
+
if choice:
|
43 |
+
init_translation, reflect_translation, final_translation = translator_sec(
|
44 |
+
endpoint2=endpoint2,
|
45 |
+
model2=model2,
|
46 |
+
api_key2=api_key2,
|
47 |
+
context_window=context_window,
|
48 |
+
num_output=num_output,
|
49 |
+
source_lang=source_lang,
|
50 |
+
target_lang=target_lang,
|
51 |
+
source_text=source_text,
|
52 |
+
country=country,
|
53 |
+
max_tokens=max_tokens,
|
54 |
+
)
|
55 |
+
|
56 |
+
else:
|
57 |
+
init_translation, reflect_translation, final_translation = translator(
|
58 |
+
source_lang=source_lang,
|
59 |
+
target_lang=target_lang,
|
60 |
+
source_text=source_text,
|
61 |
+
country=country,
|
62 |
+
max_tokens=max_tokens,
|
63 |
+
)
|
64 |
+
|
65 |
+
final_diff = gr.HighlightedText(
|
66 |
+
diff_texts(init_translation, final_translation),
|
67 |
+
label="Diff translation",
|
68 |
+
combine_adjacent=True,
|
69 |
+
show_legend=True,
|
70 |
+
visible=True,
|
71 |
+
color_map={"removed": "red", "added": "green"})
|
72 |
+
|
73 |
+
return init_translation, reflect_translation, final_translation, final_diff
|
74 |
+
|
75 |
+
def update_model(endpoint):
|
76 |
+
endpoint_model_map = {
|
77 |
+
"Groq": "llama3-70b-8192",
|
78 |
+
"OpenAI": "gpt-4o",
|
79 |
+
"Cohere": "command-r",
|
80 |
+
"TogetherAI": "Qwen/Qwen2-72B-Instruct",
|
81 |
+
"Ollama": "llama3",
|
82 |
+
"Huggingface": "mistralai/Mistral-7B-Instruct-v0.3"
|
83 |
+
}
|
84 |
+
return gr.update(value=endpoint_model_map[endpoint])
|
85 |
+
|
86 |
+
def read_doc(file):
|
87 |
+
docs = SimpleDirectoryReader(input_files=[file]).load_data()
|
88 |
+
texts = ""
|
89 |
+
for doc in docs:
|
90 |
+
texts += doc.text
|
91 |
+
texts = re.sub(r'(?m)^\s*$\n?', '', texts)
|
92 |
+
return texts
|
93 |
+
|
94 |
+
def enable_sec(choice):
|
95 |
+
if choice:
|
96 |
+
return gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)
|
97 |
+
else:
|
98 |
+
return gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)
|
99 |
+
|
100 |
+
def update_menu(visible):
|
101 |
+
return not visible, gr.update(visible=not visible)
|
102 |
+
|
103 |
+
def export_txt(strings):
|
104 |
+
os.makedirs("outputs", exist_ok=True)
|
105 |
+
base_count = len(glob(os.path.join("outputs", "*.txt")))
|
106 |
+
file_path = os.path.join("outputs", f"{base_count:06d}.txt")
|
107 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
108 |
+
f.write(strings)
|
109 |
+
return gr.update(value=file_path, visible=True)
|
110 |
+
|
111 |
+
def switch(source_lang,source_text,target_lang,output_final):
|
112 |
+
if output_final:
|
113 |
+
return gr.update(value=target_lang), gr.update(value=output_final), gr.update(value=source_lang), gr.update(value=source_text)
|
114 |
+
else:
|
115 |
+
return gr.update(value=target_lang), gr.update(value=source_text), gr.update(value=source_lang), gr.update(value="")
|
116 |
+
|
117 |
+
TITLE = """
|
118 |
+
<div style="display: inline-flex;">
|
119 |
+
<div style="margin-left: 6px; font-size:32px; color: #6366f1"><b>Translation Agent</b> WebUI</div>
|
120 |
+
</div>
|
121 |
+
"""
|
122 |
+
|
123 |
+
CSS = """
|
124 |
+
h1 {
|
125 |
+
text-align: center;
|
126 |
+
display: block;
|
127 |
+
height: 10vh;
|
128 |
+
align-content: center;
|
129 |
+
}
|
130 |
+
footer {
|
131 |
+
visibility: hidden;
|
132 |
+
}
|
133 |
+
.menu_btn {
|
134 |
+
width: 48px;
|
135 |
+
height: 48px;
|
136 |
+
max-width: 48px;
|
137 |
+
min-width: 48px;
|
138 |
+
padding: 0px;
|
139 |
+
background-color: transparent;
|
140 |
+
border: none;
|
141 |
+
cursor: pointer;
|
142 |
+
position: relative;
|
143 |
+
box-shadow: none;
|
144 |
+
}
|
145 |
+
.menu_btn::before,
|
146 |
+
.menu_btn::after {
|
147 |
+
content: '';
|
148 |
+
position: absolute;
|
149 |
+
width: 30px;
|
150 |
+
height: 3px;
|
151 |
+
background-color: #4f46e5;
|
152 |
+
transition: transform 0.3s ease;
|
153 |
+
}
|
154 |
+
.menu_btn::before {
|
155 |
+
top: 12px;
|
156 |
+
box-shadow: 0 8px 0 #6366f1;
|
157 |
+
}
|
158 |
+
.menu_btn::after {
|
159 |
+
bottom: 16px;
|
160 |
+
}
|
161 |
+
.menu_btn.active::before {
|
162 |
+
transform: translateY(8px) rotate(45deg);
|
163 |
+
box-shadow: none;
|
164 |
+
}
|
165 |
+
.menu_btn.active::after {
|
166 |
+
transform: translateY(-8px) rotate(-45deg);
|
167 |
+
}
|
168 |
+
.lang {
|
169 |
+
max-width: 100px;
|
170 |
+
min-width: 100px;
|
171 |
+
}
|
172 |
+
"""
|
173 |
+
|
174 |
+
JS = """
|
175 |
+
function () {
|
176 |
+
const menuBtn = document.getElementById('menu');
|
177 |
+
menuBtn.classList.toggle('active');
|
178 |
+
}
|
179 |
+
|
180 |
+
"""
|
181 |
+
|
182 |
+
with gr.Blocks(theme="soft", css=CSS, fill_height=True) as demo:
|
183 |
+
with gr.Row():
|
184 |
+
visible = gr.State(value=True)
|
185 |
+
menuBtn = gr.Button(value="", elem_classes="menu_btn", elem_id="menu", size="sm")
|
186 |
+
gr.HTML(TITLE)
|
187 |
+
with gr.Row():
|
188 |
+
with gr.Column(scale=1) as menubar:
|
189 |
+
endpoint = gr.Dropdown(
|
190 |
+
label="Endpoint",
|
191 |
+
choices=["Groq","OpenAI","Cohere","TogetherAI","Ollama","Huggingface"],
|
192 |
+
value="OpenAI",
|
193 |
+
)
|
194 |
+
choice = gr.Checkbox(label="Second Endpoint", info="Add second endpoint for reflection")
|
195 |
+
model = gr.Textbox(label="Model", value="gpt-4o", )
|
196 |
+
api_key = gr.Textbox(label="API_KEY", type="password", )
|
197 |
+
endpoint2 = gr.Dropdown(
|
198 |
+
label="Endpoint 2",
|
199 |
+
choices=["Groq","OpenAI","Cohere","TogetherAI","Ollama","Huggingface"],
|
200 |
+
value="OpenAI",
|
201 |
+
visible=False,
|
202 |
+
)
|
203 |
+
model2 = gr.Textbox(label="Model 2", value="gpt-4o", visible=False,)
|
204 |
+
api_key2 = gr.Textbox(label="API_KEY 2", type="password", visible=False,)
|
205 |
+
with gr.Row():
|
206 |
+
source_lang = gr.Textbox(
|
207 |
+
label="Source Lang",
|
208 |
+
value="English",
|
209 |
+
elem_classes = "lang",
|
210 |
+
)
|
211 |
+
target_lang = gr.Textbox(
|
212 |
+
label="Target Lang",
|
213 |
+
value="Spanish",
|
214 |
+
elem_classes = "lang",
|
215 |
+
)
|
216 |
+
switchBtn = gr.Button(value="🔄️")
|
217 |
+
country = gr.Textbox(label="Country", value="Argentina", max_lines=1)
|
218 |
+
with gr.Accordion("Advanced Options", open=False):
|
219 |
+
max_tokens = gr.Slider(
|
220 |
+
label="Max tokens Per Chunk",
|
221 |
+
minimum=512,
|
222 |
+
maximum=2046,
|
223 |
+
value=1000,
|
224 |
+
step=8,
|
225 |
+
)
|
226 |
+
context_window = gr.Slider(
|
227 |
+
label="Context Window",
|
228 |
+
minimum=512,
|
229 |
+
maximum=8192,
|
230 |
+
value=4096,
|
231 |
+
step=8,
|
232 |
+
)
|
233 |
+
num_output = gr.Slider(
|
234 |
+
label="Output Num",
|
235 |
+
minimum=256,
|
236 |
+
maximum=8192,
|
237 |
+
value=512,
|
238 |
+
step=8,
|
239 |
+
)
|
240 |
+
rpm = gr.Slider(
|
241 |
+
label="Request Per Minute",
|
242 |
+
minimum=1,
|
243 |
+
maximum=1000,
|
244 |
+
value=60,
|
245 |
+
step=1,
|
246 |
+
)
|
247 |
+
with gr.Column(scale=4):
|
248 |
+
source_text = gr.Textbox(
|
249 |
+
label="Source Text",
|
250 |
+
value="How we live is so different from how we ought to live that he who studies "+\
|
251 |
+
"what ought to be done rather than what is done will learn the way to his downfall "+\
|
252 |
+
"rather than to his preservation.",
|
253 |
+
lines=12,
|
254 |
+
)
|
255 |
+
with gr.Tab("Final"):
|
256 |
+
output_final = gr.Textbox(label="FInal Translation", lines=12, show_copy_button=True)
|
257 |
+
with gr.Tab("Initial"):
|
258 |
+
output_init = gr.Textbox(label="Init Translation", lines=12, show_copy_button=True)
|
259 |
+
with gr.Tab("Reflection"):
|
260 |
+
output_reflect = gr.Textbox(label="Reflection", lines=12, show_copy_button=True)
|
261 |
+
with gr.Tab("Diff"):
|
262 |
+
output_diff = gr.HighlightedText(visible = False)
|
263 |
+
with gr.Row():
|
264 |
+
submit = gr.Button(value="Translate")
|
265 |
+
upload = gr.UploadButton(label="Upload", file_types=["text"])
|
266 |
+
export = gr.DownloadButton(visible=False)
|
267 |
+
clear = gr.ClearButton([source_text, output_init, output_reflect, output_final])
|
268 |
+
|
269 |
+
switchBtn.click(fn=switch, inputs=[source_lang,source_text,target_lang,output_final], outputs=[source_lang,source_text,target_lang,output_final])
|
270 |
+
menuBtn.click(fn=update_menu, inputs=visible, outputs=[visible, menubar], js=JS)
|
271 |
+
endpoint.change(fn=update_model, inputs=[endpoint], outputs=[model])
|
272 |
+
choice.select(fn=enable_sec, inputs=[choice], outputs=[endpoint2, model2, api_key2])
|
273 |
+
endpoint2.change(fn=update_model, inputs=[endpoint2], outputs=[model2])
|
274 |
+
submit.click(fn=huanik, inputs=[endpoint, model, api_key, choice, endpoint2, model2, api_key2, source_lang, target_lang, source_text, country, max_tokens, context_window, num_output, rpm], outputs=[output_init, output_reflect, output_final, output_diff])
|
275 |
+
upload.upload(fn=read_doc, inputs = upload, outputs = source_text)
|
276 |
+
output_final.change(fn=export_txt, inputs=output_final, outputs=[export])
|
277 |
+
if __name__ == "__main__":
|
278 |
demo.queue(api_open=False).launch(show_api=False, share=False)
|
app/webui/patch.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
# a monkey patch to use llama-index completion
|
2 |
import os
|
|
|
|
|
|
|
3 |
from typing import Union
|
4 |
import src.translation_agent.utils as utils
|
5 |
|
@@ -13,15 +16,16 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
13 |
from llama_index.core import Settings
|
14 |
from llama_index.core.llms import ChatMessage
|
15 |
|
|
|
16 |
|
17 |
# Add your LLMs here
|
18 |
-
|
19 |
def model_load(
|
20 |
endpoint: str,
|
21 |
model: str,
|
22 |
api_key: str = None,
|
23 |
context_window: int = 4096,
|
24 |
num_output: int = 512,
|
|
|
25 |
):
|
26 |
if endpoint == "Groq":
|
27 |
llm = Groq(
|
@@ -53,6 +57,10 @@ def model_load(
|
|
53 |
token=api_key if api_key else os.getenv("HF_TOKEN"),
|
54 |
task="text-generation",
|
55 |
)
|
|
|
|
|
|
|
|
|
56 |
Settings.llm = llm
|
57 |
# maximum input size to the LLM
|
58 |
Settings.context_window = context_window
|
@@ -60,7 +68,29 @@ def model_load(
|
|
60 |
# number of tokens reserved for text generation.
|
61 |
Settings.num_output = num_output
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def get_completion(
|
65 |
prompt: str,
|
66 |
system_message: str = "You are a helpful assistant.",
|
@@ -84,6 +114,7 @@ def get_completion(
|
|
84 |
If json_mode is True, returns the complete API response as a dictionary.
|
85 |
If json_mode is False, returns the generated text as a string.
|
86 |
"""
|
|
|
87 |
llm = Settings.llm
|
88 |
if llm.class_name() == "HuggingFaceInferenceAPI":
|
89 |
llm.system_prompt = system_message
|
@@ -91,6 +122,7 @@ def get_completion(
|
|
91 |
ChatMessage(
|
92 |
role="user", content=prompt),
|
93 |
]
|
|
|
94 |
response = llm.chat(
|
95 |
messages=messages,
|
96 |
temperature=temperature,
|
|
|
1 |
# a monkey patch to use llama-index completion
|
2 |
import os
|
3 |
+
import time
|
4 |
+
from functools import wraps
|
5 |
+
from threading import Lock
|
6 |
from typing import Union
|
7 |
import src.translation_agent.utils as utils
|
8 |
|
|
|
16 |
from llama_index.core import Settings
|
17 |
from llama_index.core.llms import ChatMessage
|
18 |
|
19 |
+
RPM = 60
|
20 |
|
21 |
# Add your LLMs here
|
|
|
22 |
def model_load(
|
23 |
endpoint: str,
|
24 |
model: str,
|
25 |
api_key: str = None,
|
26 |
context_window: int = 4096,
|
27 |
num_output: int = 512,
|
28 |
+
rpm: int = RPM,
|
29 |
):
|
30 |
if endpoint == "Groq":
|
31 |
llm = Groq(
|
|
|
57 |
token=api_key if api_key else os.getenv("HF_TOKEN"),
|
58 |
task="text-generation",
|
59 |
)
|
60 |
+
|
61 |
+
global RPM
|
62 |
+
RPM = rpm
|
63 |
+
|
64 |
Settings.llm = llm
|
65 |
# maximum input size to the LLM
|
66 |
Settings.context_window = context_window
|
|
|
68 |
# number of tokens reserved for text generation.
|
69 |
Settings.num_output = num_output
|
70 |
|
71 |
+
def rate_limit(get_max_per_minute):
|
72 |
+
def decorator(func):
|
73 |
+
lock = Lock()
|
74 |
+
last_called = [0.0]
|
75 |
+
|
76 |
+
@wraps(func)
|
77 |
+
def wrapper(*args, **kwargs):
|
78 |
+
with lock:
|
79 |
+
max_per_minute = get_max_per_minute()
|
80 |
+
min_interval = 60.0 / max_per_minute
|
81 |
+
elapsed = time.time() - last_called[0]
|
82 |
+
left_to_wait = min_interval - elapsed
|
83 |
|
84 |
+
if left_to_wait > 0:
|
85 |
+
time.sleep(left_to_wait)
|
86 |
+
|
87 |
+
ret = func(*args, **kwargs)
|
88 |
+
last_called[0] = time.time()
|
89 |
+
return ret
|
90 |
+
return wrapper
|
91 |
+
return decorator
|
92 |
+
|
93 |
+
@rate_limit(lambda: RPM)
|
94 |
def get_completion(
|
95 |
prompt: str,
|
96 |
system_message: str = "You are a helpful assistant.",
|
|
|
114 |
If json_mode is True, returns the complete API response as a dictionary.
|
115 |
If json_mode is False, returns the generated text as a string.
|
116 |
"""
|
117 |
+
print(time.localtime())
|
118 |
llm = Settings.llm
|
119 |
if llm.class_name() == "HuggingFaceInferenceAPI":
|
120 |
llm.system_prompt = system_message
|
|
|
122 |
ChatMessage(
|
123 |
role="user", content=prompt),
|
124 |
]
|
125 |
+
|
126 |
response = llm.chat(
|
127 |
messages=messages,
|
128 |
temperature=temperature,
|
app/webui/process.py
CHANGED
@@ -1,213 +1,213 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from simplemma import simple_tokenizer
|
3 |
-
from difflib import Differ
|
4 |
-
from icecream import ic
|
5 |
-
from app.webui.patch import model_load,num_tokens_in_string,one_chunk_initial_translation, one_chunk_reflect_on_translation, one_chunk_improve_translation
|
6 |
-
from app.webui.patch import calculate_chunk_size, multichunk_initial_translation, multichunk_reflect_on_translation, multichunk_improve_translation
|
7 |
-
|
8 |
-
from llama_index.core.node_parser import SentenceSplitter
|
9 |
-
|
10 |
-
def tokenize(text):
|
11 |
-
# Use nltk to tokenize the text
|
12 |
-
words = simple_tokenizer(text)
|
13 |
-
# Check if the text contains spaces
|
14 |
-
if ' ' in text:
|
15 |
-
# Create a list of words and spaces
|
16 |
-
tokens = []
|
17 |
-
for word in words:
|
18 |
-
tokens.append(word)
|
19 |
-
if not word.startswith("'") and not word.endswith("'"): # Avoid adding space after punctuation
|
20 |
-
tokens.append(' ') # Add space after each word
|
21 |
-
return tokens[:-1] # Remove the last space
|
22 |
-
else:
|
23 |
-
return words
|
24 |
-
|
25 |
-
def diff_texts(text1, text2):
|
26 |
-
tokens1 = tokenize(text1)
|
27 |
-
tokens2 = tokenize(text2)
|
28 |
-
|
29 |
-
d = Differ()
|
30 |
-
diff_result = list(d.compare(tokens1, tokens2))
|
31 |
-
|
32 |
-
highlighted_text = []
|
33 |
-
for token in diff_result:
|
34 |
-
word = token[2:]
|
35 |
-
category = None
|
36 |
-
if token[0] == '+':
|
37 |
-
category = 'added'
|
38 |
-
elif token[0] == '-':
|
39 |
-
category = 'removed'
|
40 |
-
elif token[0] == '?':
|
41 |
-
continue # Ignore the hints line
|
42 |
-
|
43 |
-
highlighted_text.append((word, category))
|
44 |
-
|
45 |
-
return highlighted_text
|
46 |
-
|
47 |
-
#modified from src.translaation-agent.utils.tranlsate
|
48 |
-
def translator(
|
49 |
-
source_lang,
|
50 |
-
target_lang,
|
51 |
-
source_text,
|
52 |
-
country,
|
53 |
-
max_tokens=1000,
|
54 |
-
):
|
55 |
-
|
56 |
-
"""Translate the source_text from source_lang to target_lang."""
|
57 |
-
num_tokens_in_text = num_tokens_in_string(source_text)
|
58 |
-
|
59 |
-
ic(num_tokens_in_text)
|
60 |
-
|
61 |
-
if num_tokens_in_text < max_tokens:
|
62 |
-
ic("Translating text as single chunk")
|
63 |
-
|
64 |
-
#Note: use yield from B() if put yield in function B()
|
65 |
-
init_translation = one_chunk_initial_translation(
|
66 |
-
source_lang, target_lang, source_text
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
reflection = one_chunk_reflect_on_translation(
|
71 |
-
source_lang, target_lang, source_text, init_translation, country
|
72 |
-
)
|
73 |
-
|
74 |
-
final_translation = one_chunk_improve_translation(
|
75 |
-
source_lang, target_lang, source_text, init_translation, reflection
|
76 |
-
)
|
77 |
-
|
78 |
-
return init_translation, reflection, final_translation
|
79 |
-
|
80 |
-
else:
|
81 |
-
ic("Translating text as multiple chunks")
|
82 |
-
|
83 |
-
token_size = calculate_chunk_size(
|
84 |
-
token_count=num_tokens_in_text, token_limit=max_tokens
|
85 |
-
)
|
86 |
-
|
87 |
-
ic(token_size)
|
88 |
-
|
89 |
-
#using sentence splitter
|
90 |
-
text_parser = SentenceSplitter(
|
91 |
-
chunk_size=token_size,
|
92 |
-
)
|
93 |
-
|
94 |
-
source_text_chunks = text_parser.split_text(source_text)
|
95 |
-
|
96 |
-
translation_1_chunks = multichunk_initial_translation(
|
97 |
-
source_lang, target_lang, source_text_chunks
|
98 |
-
)
|
99 |
-
|
100 |
-
init_translation = "".join(translation_1_chunks)
|
101 |
-
|
102 |
-
reflection_chunks = multichunk_reflect_on_translation(
|
103 |
-
source_lang,
|
104 |
-
target_lang,
|
105 |
-
source_text_chunks,
|
106 |
-
translation_1_chunks,
|
107 |
-
country,
|
108 |
-
)
|
109 |
-
|
110 |
-
reflection = "".join(reflection_chunks)
|
111 |
-
|
112 |
-
translation_2_chunks = multichunk_improve_translation(
|
113 |
-
source_lang,
|
114 |
-
target_lang,
|
115 |
-
source_text_chunks,
|
116 |
-
translation_1_chunks,
|
117 |
-
reflection_chunks,
|
118 |
-
)
|
119 |
-
|
120 |
-
final_translation = "".join(translation_2_chunks)
|
121 |
-
|
122 |
-
return init_translation, reflection, final_translation
|
123 |
-
|
124 |
-
|
125 |
-
def translator_sec(
|
126 |
-
endpoint2,
|
127 |
-
model2,
|
128 |
-
api_key2,
|
129 |
-
context_window,
|
130 |
-
num_output,
|
131 |
-
source_lang,
|
132 |
-
target_lang,
|
133 |
-
source_text,
|
134 |
-
country,
|
135 |
-
max_tokens=1000,
|
136 |
-
):
|
137 |
-
|
138 |
-
"""Translate the source_text from source_lang to target_lang."""
|
139 |
-
num_tokens_in_text = num_tokens_in_string(source_text)
|
140 |
-
|
141 |
-
ic(num_tokens_in_text)
|
142 |
-
|
143 |
-
if num_tokens_in_text < max_tokens:
|
144 |
-
ic("Translating text as single chunk")
|
145 |
-
|
146 |
-
#Note: use yield from B() if put yield in function B()
|
147 |
-
init_translation = one_chunk_initial_translation(
|
148 |
-
source_lang, target_lang, source_text
|
149 |
-
)
|
150 |
-
|
151 |
-
try:
|
152 |
-
model_load(endpoint2, model2, api_key2, context_window, num_output)
|
153 |
-
except Exception as e:
|
154 |
-
raise gr.Error(f"An unexpected error occurred: {e}")
|
155 |
-
|
156 |
-
reflection = one_chunk_reflect_on_translation(
|
157 |
-
source_lang, target_lang, source_text, init_translation, country
|
158 |
-
)
|
159 |
-
|
160 |
-
final_translation = one_chunk_improve_translation(
|
161 |
-
source_lang, target_lang, source_text, init_translation, reflection
|
162 |
-
)
|
163 |
-
|
164 |
-
return init_translation, reflection, final_translation
|
165 |
-
|
166 |
-
else:
|
167 |
-
ic("Translating text as multiple chunks")
|
168 |
-
|
169 |
-
token_size = calculate_chunk_size(
|
170 |
-
token_count=num_tokens_in_text, token_limit=max_tokens
|
171 |
-
)
|
172 |
-
|
173 |
-
ic(token_size)
|
174 |
-
|
175 |
-
#using sentence splitter
|
176 |
-
text_parser = SentenceSplitter(
|
177 |
-
chunk_size=token_size,
|
178 |
-
)
|
179 |
-
|
180 |
-
source_text_chunks = text_parser.split_text(source_text)
|
181 |
-
|
182 |
-
translation_1_chunks = multichunk_initial_translation(
|
183 |
-
source_lang, target_lang, source_text_chunks
|
184 |
-
)
|
185 |
-
|
186 |
-
init_translation = "".join(translation_1_chunks)
|
187 |
-
|
188 |
-
try:
|
189 |
-
model_load(endpoint2, model2, api_key2, context_window, num_output)
|
190 |
-
except Exception as e:
|
191 |
-
raise gr.Error(f"An unexpected error occurred: {e}")
|
192 |
-
|
193 |
-
reflection_chunks = multichunk_reflect_on_translation(
|
194 |
-
source_lang,
|
195 |
-
target_lang,
|
196 |
-
source_text_chunks,
|
197 |
-
translation_1_chunks,
|
198 |
-
country,
|
199 |
-
)
|
200 |
-
|
201 |
-
reflection = "".join(reflection_chunks)
|
202 |
-
|
203 |
-
translation_2_chunks = multichunk_improve_translation(
|
204 |
-
source_lang,
|
205 |
-
target_lang,
|
206 |
-
source_text_chunks,
|
207 |
-
translation_1_chunks,
|
208 |
-
reflection_chunks,
|
209 |
-
)
|
210 |
-
|
211 |
-
final_translation = "".join(translation_2_chunks)
|
212 |
-
|
213 |
-
return init_translation, reflection, final_translation
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from simplemma import simple_tokenizer
|
3 |
+
from difflib import Differ
|
4 |
+
from icecream import ic
|
5 |
+
from app.webui.patch import model_load,num_tokens_in_string,one_chunk_initial_translation, one_chunk_reflect_on_translation, one_chunk_improve_translation
|
6 |
+
from app.webui.patch import calculate_chunk_size, multichunk_initial_translation, multichunk_reflect_on_translation, multichunk_improve_translation
|
7 |
+
|
8 |
+
from llama_index.core.node_parser import SentenceSplitter
|
9 |
+
|
10 |
+
def tokenize(text):
|
11 |
+
# Use nltk to tokenize the text
|
12 |
+
words = simple_tokenizer(text)
|
13 |
+
# Check if the text contains spaces
|
14 |
+
if ' ' in text:
|
15 |
+
# Create a list of words and spaces
|
16 |
+
tokens = []
|
17 |
+
for word in words:
|
18 |
+
tokens.append(word)
|
19 |
+
if not word.startswith("'") and not word.endswith("'"): # Avoid adding space after punctuation
|
20 |
+
tokens.append(' ') # Add space after each word
|
21 |
+
return tokens[:-1] # Remove the last space
|
22 |
+
else:
|
23 |
+
return words
|
24 |
+
|
25 |
+
def diff_texts(text1, text2):
|
26 |
+
tokens1 = tokenize(text1)
|
27 |
+
tokens2 = tokenize(text2)
|
28 |
+
|
29 |
+
d = Differ()
|
30 |
+
diff_result = list(d.compare(tokens1, tokens2))
|
31 |
+
|
32 |
+
highlighted_text = []
|
33 |
+
for token in diff_result:
|
34 |
+
word = token[2:]
|
35 |
+
category = None
|
36 |
+
if token[0] == '+':
|
37 |
+
category = 'added'
|
38 |
+
elif token[0] == '-':
|
39 |
+
category = 'removed'
|
40 |
+
elif token[0] == '?':
|
41 |
+
continue # Ignore the hints line
|
42 |
+
|
43 |
+
highlighted_text.append((word, category))
|
44 |
+
|
45 |
+
return highlighted_text
|
46 |
+
|
47 |
+
#modified from src.translaation-agent.utils.tranlsate
|
48 |
+
def translator(
|
49 |
+
source_lang: str,
|
50 |
+
target_lang: str,
|
51 |
+
source_text: str,
|
52 |
+
country: str,
|
53 |
+
max_tokens:int = 1000,
|
54 |
+
):
|
55 |
+
|
56 |
+
"""Translate the source_text from source_lang to target_lang."""
|
57 |
+
num_tokens_in_text = num_tokens_in_string(source_text)
|
58 |
+
|
59 |
+
ic(num_tokens_in_text)
|
60 |
+
|
61 |
+
if num_tokens_in_text < max_tokens:
|
62 |
+
ic("Translating text as single chunk")
|
63 |
+
|
64 |
+
#Note: use yield from B() if put yield in function B()
|
65 |
+
init_translation = one_chunk_initial_translation(
|
66 |
+
source_lang, target_lang, source_text
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
reflection = one_chunk_reflect_on_translation(
|
71 |
+
source_lang, target_lang, source_text, init_translation, country
|
72 |
+
)
|
73 |
+
|
74 |
+
final_translation = one_chunk_improve_translation(
|
75 |
+
source_lang, target_lang, source_text, init_translation, reflection
|
76 |
+
)
|
77 |
+
|
78 |
+
return init_translation, reflection, final_translation
|
79 |
+
|
80 |
+
else:
|
81 |
+
ic("Translating text as multiple chunks")
|
82 |
+
|
83 |
+
token_size = calculate_chunk_size(
|
84 |
+
token_count=num_tokens_in_text, token_limit=max_tokens
|
85 |
+
)
|
86 |
+
|
87 |
+
ic(token_size)
|
88 |
+
|
89 |
+
#using sentence splitter
|
90 |
+
text_parser = SentenceSplitter(
|
91 |
+
chunk_size=token_size,
|
92 |
+
)
|
93 |
+
|
94 |
+
source_text_chunks = text_parser.split_text(source_text)
|
95 |
+
|
96 |
+
translation_1_chunks = multichunk_initial_translation(
|
97 |
+
source_lang, target_lang, source_text_chunks
|
98 |
+
)
|
99 |
+
|
100 |
+
init_translation = "".join(translation_1_chunks)
|
101 |
+
|
102 |
+
reflection_chunks = multichunk_reflect_on_translation(
|
103 |
+
source_lang,
|
104 |
+
target_lang,
|
105 |
+
source_text_chunks,
|
106 |
+
translation_1_chunks,
|
107 |
+
country,
|
108 |
+
)
|
109 |
+
|
110 |
+
reflection = "".join(reflection_chunks)
|
111 |
+
|
112 |
+
translation_2_chunks = multichunk_improve_translation(
|
113 |
+
source_lang,
|
114 |
+
target_lang,
|
115 |
+
source_text_chunks,
|
116 |
+
translation_1_chunks,
|
117 |
+
reflection_chunks,
|
118 |
+
)
|
119 |
+
|
120 |
+
final_translation = "".join(translation_2_chunks)
|
121 |
+
|
122 |
+
return init_translation, reflection, final_translation
|
123 |
+
|
124 |
+
|
125 |
+
def translator_sec(
|
126 |
+
endpoint2: str,
|
127 |
+
model2: str,
|
128 |
+
api_key2: str,
|
129 |
+
context_window: int,
|
130 |
+
num_output: int,
|
131 |
+
source_lang: str,
|
132 |
+
target_lang: str,
|
133 |
+
source_text: str,
|
134 |
+
country: str,
|
135 |
+
max_tokens: int = 1000,
|
136 |
+
):
|
137 |
+
|
138 |
+
"""Translate the source_text from source_lang to target_lang."""
|
139 |
+
num_tokens_in_text = num_tokens_in_string(source_text)
|
140 |
+
|
141 |
+
ic(num_tokens_in_text)
|
142 |
+
|
143 |
+
if num_tokens_in_text < max_tokens:
|
144 |
+
ic("Translating text as single chunk")
|
145 |
+
|
146 |
+
#Note: use yield from B() if put yield in function B()
|
147 |
+
init_translation = one_chunk_initial_translation(
|
148 |
+
source_lang, target_lang, source_text
|
149 |
+
)
|
150 |
+
|
151 |
+
try:
|
152 |
+
model_load(endpoint2, model2, api_key2, context_window, num_output)
|
153 |
+
except Exception as e:
|
154 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
155 |
+
|
156 |
+
reflection = one_chunk_reflect_on_translation(
|
157 |
+
source_lang, target_lang, source_text, init_translation, country
|
158 |
+
)
|
159 |
+
|
160 |
+
final_translation = one_chunk_improve_translation(
|
161 |
+
source_lang, target_lang, source_text, init_translation, reflection
|
162 |
+
)
|
163 |
+
|
164 |
+
return init_translation, reflection, final_translation
|
165 |
+
|
166 |
+
else:
|
167 |
+
ic("Translating text as multiple chunks")
|
168 |
+
|
169 |
+
token_size = calculate_chunk_size(
|
170 |
+
token_count=num_tokens_in_text, token_limit=max_tokens
|
171 |
+
)
|
172 |
+
|
173 |
+
ic(token_size)
|
174 |
+
|
175 |
+
#using sentence splitter
|
176 |
+
text_parser = SentenceSplitter(
|
177 |
+
chunk_size=token_size,
|
178 |
+
)
|
179 |
+
|
180 |
+
source_text_chunks = text_parser.split_text(source_text)
|
181 |
+
|
182 |
+
translation_1_chunks = multichunk_initial_translation(
|
183 |
+
source_lang, target_lang, source_text_chunks
|
184 |
+
)
|
185 |
+
|
186 |
+
init_translation = "".join(translation_1_chunks)
|
187 |
+
|
188 |
+
try:
|
189 |
+
model_load(endpoint2, model2, api_key2, context_window, num_output)
|
190 |
+
except Exception as e:
|
191 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
192 |
+
|
193 |
+
reflection_chunks = multichunk_reflect_on_translation(
|
194 |
+
source_lang,
|
195 |
+
target_lang,
|
196 |
+
source_text_chunks,
|
197 |
+
translation_1_chunks,
|
198 |
+
country,
|
199 |
+
)
|
200 |
+
|
201 |
+
reflection = "".join(reflection_chunks)
|
202 |
+
|
203 |
+
translation_2_chunks = multichunk_improve_translation(
|
204 |
+
source_lang,
|
205 |
+
target_lang,
|
206 |
+
source_text_chunks,
|
207 |
+
translation_1_chunks,
|
208 |
+
reflection_chunks,
|
209 |
+
)
|
210 |
+
|
211 |
+
final_translation = "".join(translation_2_chunks)
|
212 |
+
|
213 |
+
return init_translation, reflection, final_translation
|