File size: 6,646 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# S-Lab License 1.0

# Copyright 2023 S-Lab
# Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# 4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work.

# Code has been modified from https://github.com/TianxingWu/FreeInit

import torch
import torch.fft as fft
import math


class FreeInitFilter:
    GAUSSIAN = "gaussian"
    IDEAL = "ideal"
    BOX = "box"
    BUTTERWORTH = "butterworth"

    LIST = [GAUSSIAN, BUTTERWORTH, IDEAL, BOX]


def freq_mix_3d(x, noise, LPF):
    """
    Noise reinitialization.

    Args:
        x: diffused latent
        noise: randomly sampled noise
        LPF: low pass filter
    """
    # FFT
    x_freq = fft.fftn(x, dim=(-4, -2, -1))
    x_freq = fft.fftshift(x_freq, dim=(-4, -2, -1))
    noise_freq = fft.fftn(noise, dim=(-4, -2, -1))
    noise_freq = fft.fftshift(noise_freq, dim=(-4, -2, -1))

    # frequency mix
    HPF = 1 - LPF
    x_freq_low = x_freq * LPF
    noise_freq_high = noise_freq * HPF
    x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain

    # IFFT
    x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-4, -2, -1))
    x_mixed = fft.ifftn(x_freq_mixed, dim=(-4, -2, -1)).real

    return x_mixed


def get_freq_filter(shape, device, filter_type, n, d_s, d_t):
    """
    Form the frequency filter for noise reinitialization.

    Args:
        shape: shape of latent (T, C, H, W)
        filter_type: type of the freq filter
        n: (only for butterworth) order of the filter, larger n ~ ideal, smaller n ~ gaussian
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    if filter_type == FreeInitFilter.GAUSSIAN:
        return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == FreeInitFilter.IDEAL:
        return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == FreeInitFilter.BOX:
        return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == FreeInitFilter.BUTTERWORTH:
        return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device)
    else:
        raise NotImplementedError

def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the gaussian low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-4], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[t, ..., h,w] = math.exp(-1/(2*d_s**2) * d_square)
    return mask


def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25):
    """
    Compute the butterworth low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        n: order of the filter, larger n ~ ideal, smaller n ~ gaussian
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-4], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[t, ..., h,w] = 1 / (1 + (d_square / d_s**2)**n)
    return mask


def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the ideal low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-4], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[t, ...,h,w] =  1 if d_square <= d_s*2 else 0
    return mask


def box_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the ideal low pass filter mask (approximated version).

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-4], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask

    threshold_s = round(int(H // 2) * d_s)
    threshold_t = round(T // 2 * d_t)

    cframe, crow, ccol = T // 2, H // 2, W //2
    mask[cframe - threshold_t:cframe + threshold_t, ..., crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0

    return mask