Spaces:
Running
Running
File size: 11,747 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from typing import Union
from torch import Tensor
from .freeinit import FreeInitFilter
from .sample_settings import (FreeInitOptions, IterationOptions,
NoiseLayerAdd, NoiseLayerAddWeighted, NoiseLayerGroup, NoiseLayerReplace, NoiseLayerType,
SeedNoiseGeneration, SampleSettings, CustomCFGKeyframeGroup, CustomCFGKeyframe)
from .utils_model import BIGMIN, BIGMAX, SigmaSchedule
class SampleSettingsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen": (SeedNoiseGeneration.LIST,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
},
"optional": {
"noise_layers": ("NOISE_LAYERS",),
"iteration_opts": ("ITERATION_OPTS",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
"adapt_denoise_steps": ("BOOLEAN", {"default": False},),
"custom_cfg": ("CUSTOM_CFG",),
"sigma_schedule": ("SIGMA_SCHEDULE",),
}
}
RETURN_TYPES = ("SAMPLE_SETTINGS",)
RETURN_NAMES = ("settings",)
CATEGORY = "Animate Diff ππ
π
"
FUNCTION = "create_settings"
def create_settings(self, batch_offset: int, noise_type: str, seed_gen: str, seed_offset: int, noise_layers: NoiseLayerGroup=None,
iteration_opts: IterationOptions=None, seed_override: int=None, adapt_denoise_steps=False,
custom_cfg: CustomCFGKeyframeGroup=None, sigma_schedule: SigmaSchedule=None):
sampling_settings = SampleSettings(batch_offset=batch_offset, noise_type=noise_type, seed_gen=seed_gen, seed_offset=seed_offset, noise_layers=noise_layers,
iteration_opts=iteration_opts, seed_override=seed_override, adapt_denoise_steps=adapt_denoise_steps,
custom_cfg=custom_cfg, sigma_schedule=sigma_schedule)
return (sampling_settings,)
class NoiseLayerReplaceNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff ππ
π
/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerReplace(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)
class NoiseLayerAddNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff ππ
π
/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
noise_weight: float,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerAdd(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional,
noise_weight=noise_weight)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)
class NoiseLayerAddWeightedNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}),
"balance_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff ππ
π
/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
noise_weight: float, balance_multiplier: float,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerAddWeighted(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional,
noise_weight=noise_weight, balance_multiplier=balance_multiplier)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)
class IterationOptionsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"iterations": ("INT", {"default": 1, "min": 1}),
},
"optional": {
"iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"iter_seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
}
}
RETURN_TYPES = ("ITERATION_OPTS",)
CATEGORY = "Animate Diff ππ
π
/iteration opts"
FUNCTION = "create_iter_opts"
def create_iter_opts(self, iterations: int, iter_batch_offset: int=0, iter_seed_offset: int=0):
iter_opts = IterationOptions(iterations=iterations, iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset)
return (iter_opts,)
class FreeInitOptionsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"iterations": ("INT", {"default": 2, "min": 1}),
"filter": (FreeInitFilter.LIST,),
"d_s": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}),
"d_t": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}),
"n_butterworth": ("INT", {"default": 4, "min": 1, "max": 100},),
"sigma_step": ("INT", {"default": 999, "min": 1, "max": 999}),
"apply_to_1st_iter": ("BOOLEAN", {"default": False}),
"init_type": (FreeInitOptions.LIST,)
},
"optional": {
"iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"iter_seed_offset": ("INT", {"default": 1, "min": BIGMIN, "max": BIGMAX}),
}
}
RETURN_TYPES = ("ITERATION_OPTS",)
CATEGORY = "Animate Diff ππ
π
/iteration opts"
FUNCTION = "create_iter_opts"
def create_iter_opts(self, iterations: int, filter: str, d_s: float, d_t: float, n_butterworth: int,
sigma_step: int, apply_to_1st_iter: bool, init_type: str,
iter_batch_offset: int=0, iter_seed_offset: int=1):
# init_type does nothing for now, not until I add more methods of applying low+high freq noise
iter_opts = FreeInitOptions(iterations=iterations, step=sigma_step, apply_to_1st_iter=apply_to_1st_iter,
filter=filter, d_s=d_s, d_t=d_t, n=n_butterworth, init_type=init_type,
iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset)
return (iter_opts,)
class CustomCFGNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfg_multival": ("MULTIVAL",),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff ππ
π
/sample settings"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfg_multival: Union[float, Tensor]):
keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival)
cfg_custom = CustomCFGKeyframeGroup()
cfg_custom.add(keyframe)
return (cfg_custom,)
class CustomCFGKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfg_multival": ("MULTIVAL",),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
},
"optional": {
"prev_custom_cfg": ("CUSTOM_CFG",),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff ππ
π
/sample settings"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfg_multival: Union[float, Tensor], start_percent: float=0.0, guarantee_steps: int=1,
prev_custom_cfg: CustomCFGKeyframeGroup=None):
if not prev_custom_cfg:
prev_custom_cfg = CustomCFGKeyframeGroup()
prev_custom_cfg = prev_custom_cfg.clone()
keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival, start_percent=start_percent, guarantee_steps=guarantee_steps)
prev_custom_cfg.add(keyframe)
return (prev_custom_cfg,)
|