Spaces:
Running
Running
""" | |
Modified from https://github.com/sczhou/CodeFormer | |
VQGAN code, adapted from the original created by the Unleashing Transformers authors: | |
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py | |
This verison of the arch specifically was gathered from an old version of GFPGAN. If this is a problem, please contact me. | |
""" | |
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import logging as logger | |
from torch import Tensor | |
class VectorQuantizer(nn.Module): | |
def __init__(self, codebook_size, emb_dim, beta): | |
super(VectorQuantizer, self).__init__() | |
self.codebook_size = codebook_size # number of embeddings | |
self.emb_dim = emb_dim # dimension of embedding | |
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 | |
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) | |
self.embedding.weight.data.uniform_( | |
-1.0 / self.codebook_size, 1.0 / self.codebook_size | |
) | |
def forward(self, z): | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = z.permute(0, 2, 3, 1).contiguous() | |
z_flattened = z.view(-1, self.emb_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = ( | |
(z_flattened**2).sum(dim=1, keepdim=True) | |
+ (self.embedding.weight**2).sum(1) | |
- 2 * torch.matmul(z_flattened, self.embedding.weight.t()) | |
) | |
mean_distance = torch.mean(d) | |
# find closest encodings | |
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) | |
min_encoding_scores, min_encoding_indices = torch.topk( | |
d, 1, dim=1, largest=False | |
) | |
# [0-1], higher score, higher confidence | |
min_encoding_scores = torch.exp(-min_encoding_scores / 10) | |
min_encodings = torch.zeros( | |
min_encoding_indices.shape[0], self.codebook_size | |
).to(z) | |
min_encodings.scatter_(1, min_encoding_indices, 1) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) | |
# compute loss for embedding | |
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( | |
(z_q - z.detach()) ** 2 | |
) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# perplexity | |
e_mean = torch.mean(min_encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return ( | |
z_q, | |
loss, | |
{ | |
"perplexity": perplexity, | |
"min_encodings": min_encodings, | |
"min_encoding_indices": min_encoding_indices, | |
"min_encoding_scores": min_encoding_scores, | |
"mean_distance": mean_distance, | |
}, | |
) | |
def get_codebook_feat(self, indices, shape): | |
# input indices: batch*token_num -> (batch*token_num)*1 | |
# shape: batch, height, width, channel | |
indices = indices.view(-1, 1) | |
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) | |
min_encodings.scatter_(1, indices, 1) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) | |
if shape is not None: # reshape back to match original input shape | |
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() | |
return z_q | |
class GumbelQuantizer(nn.Module): | |
def __init__( | |
self, | |
codebook_size, | |
emb_dim, | |
num_hiddens, | |
straight_through=False, | |
kl_weight=5e-4, | |
temp_init=1.0, | |
): | |
super().__init__() | |
self.codebook_size = codebook_size # number of embeddings | |
self.emb_dim = emb_dim # dimension of embedding | |
self.straight_through = straight_through | |
self.temperature = temp_init | |
self.kl_weight = kl_weight | |
self.proj = nn.Conv2d( | |
num_hiddens, codebook_size, 1 | |
) # projects last encoder layer to quantized logits | |
self.embed = nn.Embedding(codebook_size, emb_dim) | |
def forward(self, z): | |
hard = self.straight_through if self.training else True | |
logits = self.proj(z) | |
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) | |
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) | |
# + kl divergence to the prior loss | |
qy = F.softmax(logits, dim=1) | |
diff = ( | |
self.kl_weight | |
* torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() | |
) | |
min_encoding_indices = soft_one_hot.argmax(dim=1) | |
return z_q, diff, {"min_encoding_indices": min_encoding_indices} | |
class Downsample(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
) | |
def forward(self, x): | |
pad = (0, 1, 0, 1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
return x | |
class Upsample(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = self.conv(x) | |
return x | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) | |
k = k.reshape(b, c, h * w) | |
w_ = torch.bmm(q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = F.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) | |
h_ = torch.bmm(v, w_) | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
nf, | |
out_channels, | |
ch_mult, | |
num_res_blocks, | |
resolution, | |
attn_resolutions, | |
): | |
super().__init__() | |
self.nf = nf | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.attn_resolutions = attn_resolutions | |
curr_res = self.resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
blocks = [] | |
# initial convultion | |
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) | |
# residual and downsampling blocks, with attention on smaller res (16x16) | |
for i in range(self.num_resolutions): | |
block_in_ch = nf * in_ch_mult[i] | |
block_out_ch = nf * ch_mult[i] | |
for _ in range(self.num_res_blocks): | |
blocks.append(ResBlock(block_in_ch, block_out_ch)) | |
block_in_ch = block_out_ch | |
if curr_res in attn_resolutions: | |
blocks.append(AttnBlock(block_in_ch)) | |
if i != self.num_resolutions - 1: | |
blocks.append(Downsample(block_in_ch)) | |
curr_res = curr_res // 2 | |
# non-local attention block | |
blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore | |
blocks.append(AttnBlock(block_in_ch)) # type: ignore | |
blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore | |
# normalise and convert to latent size | |
blocks.append(normalize(block_in_ch)) # type: ignore | |
blocks.append( | |
nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1) # type: ignore | |
) | |
self.blocks = nn.ModuleList(blocks) | |
def forward(self, x): | |
for block in self.blocks: | |
x = block(x) | |
return x | |
class Generator(nn.Module): | |
def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim): | |
super().__init__() | |
self.nf = nf | |
self.ch_mult = ch_mult | |
self.num_resolutions = len(self.ch_mult) | |
self.num_res_blocks = res_blocks | |
self.resolution = img_size | |
self.attn_resolutions = attn_resolutions | |
self.in_channels = emb_dim | |
self.out_channels = 3 | |
block_in_ch = self.nf * self.ch_mult[-1] | |
curr_res = self.resolution // 2 ** (self.num_resolutions - 1) | |
blocks = [] | |
# initial conv | |
blocks.append( | |
nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1) | |
) | |
# non-local attention block | |
blocks.append(ResBlock(block_in_ch, block_in_ch)) | |
blocks.append(AttnBlock(block_in_ch)) | |
blocks.append(ResBlock(block_in_ch, block_in_ch)) | |
for i in reversed(range(self.num_resolutions)): | |
block_out_ch = self.nf * self.ch_mult[i] | |
for _ in range(self.num_res_blocks): | |
blocks.append(ResBlock(block_in_ch, block_out_ch)) | |
block_in_ch = block_out_ch | |
if curr_res in self.attn_resolutions: | |
blocks.append(AttnBlock(block_in_ch)) | |
if i != 0: | |
blocks.append(Upsample(block_in_ch)) | |
curr_res = curr_res * 2 | |
blocks.append(normalize(block_in_ch)) | |
blocks.append( | |
nn.Conv2d( | |
block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
) | |
self.blocks = nn.ModuleList(blocks) | |
def forward(self, x): | |
for block in self.blocks: | |
x = block(x) | |
return x | |
class VQAutoEncoder(nn.Module): | |
def __init__( | |
self, | |
img_size, | |
nf, | |
ch_mult, | |
quantizer="nearest", | |
res_blocks=2, | |
attn_resolutions=[16], | |
codebook_size=1024, | |
emb_dim=256, | |
beta=0.25, | |
gumbel_straight_through=False, | |
gumbel_kl_weight=1e-8, | |
model_path=None, | |
): | |
super().__init__() | |
self.in_channels = 3 | |
self.nf = nf | |
self.n_blocks = res_blocks | |
self.codebook_size = codebook_size | |
self.embed_dim = emb_dim | |
self.ch_mult = ch_mult | |
self.resolution = img_size | |
self.attn_resolutions = attn_resolutions | |
self.quantizer_type = quantizer | |
self.encoder = Encoder( | |
self.in_channels, | |
self.nf, | |
self.embed_dim, | |
self.ch_mult, | |
self.n_blocks, | |
self.resolution, | |
self.attn_resolutions, | |
) | |
if self.quantizer_type == "nearest": | |
self.beta = beta # 0.25 | |
self.quantize = VectorQuantizer( | |
self.codebook_size, self.embed_dim, self.beta | |
) | |
elif self.quantizer_type == "gumbel": | |
self.gumbel_num_hiddens = emb_dim | |
self.straight_through = gumbel_straight_through | |
self.kl_weight = gumbel_kl_weight | |
self.quantize = GumbelQuantizer( | |
self.codebook_size, | |
self.embed_dim, | |
self.gumbel_num_hiddens, | |
self.straight_through, | |
self.kl_weight, | |
) | |
self.generator = Generator( | |
nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim | |
) | |
if model_path is not None: | |
chkpt = torch.load(model_path, map_location="cpu") | |
if "params_ema" in chkpt: | |
self.load_state_dict( | |
torch.load(model_path, map_location="cpu")["params_ema"] | |
) | |
logger.info(f"vqgan is loaded from: {model_path} [params_ema]") | |
elif "params" in chkpt: | |
self.load_state_dict( | |
torch.load(model_path, map_location="cpu")["params"] | |
) | |
logger.info(f"vqgan is loaded from: {model_path} [params]") | |
else: | |
raise ValueError("Wrong params!") | |
def forward(self, x): | |
x = self.encoder(x) | |
quant, codebook_loss, quant_stats = self.quantize(x) | |
x = self.generator(quant) | |
return x, codebook_loss, quant_stats | |
def calc_mean_std(feat, eps=1e-5): | |
"""Calculate mean and std for adaptive_instance_normalization. | |
Args: | |
feat (Tensor): 4D tensor. | |
eps (float): A small value added to the variance to avoid | |
divide-by-zero. Default: 1e-5. | |
""" | |
size = feat.size() | |
assert len(size) == 4, "The input feature should be 4D tensor." | |
b, c = size[:2] | |
feat_var = feat.view(b, c, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(b, c, 1, 1) | |
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) | |
return feat_mean, feat_std | |
def adaptive_instance_normalization(content_feat, style_feat): | |
"""Adaptive instance normalization. | |
Adjust the reference features to have the similar color and illuminations | |
as those in the degradate features. | |
Args: | |
content_feat (Tensor): The reference feature. | |
style_feat (Tensor): The degradate features. | |
""" | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand( | |
size | |
) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
class PositionEmbeddingSine(nn.Module): | |
""" | |
This is a more standard version of the position embedding, very similar to the one | |
used by the Attention is all you need paper, generalized to work on images. | |
""" | |
def __init__( | |
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None | |
): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, x, mask=None): | |
if mask is None: | |
mask = torch.zeros( | |
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool | |
) | |
not_mask = ~mask # pylint: disable=invalid-unary-operand-type | |
y_embed = not_mask.cumsum(1, dtype=torch.float32) | |
x_embed = not_mask.cumsum(2, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
return pos | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(f"activation should be relu/gelu, not {activation}.") | |
class TransformerSALayer(nn.Module): | |
def __init__( | |
self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu" | |
): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) | |
# Implementation of Feedforward model - MLP | |
self.linear1 = nn.Linear(embed_dim, dim_mlp) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_mlp, embed_dim) | |
self.norm1 = nn.LayerNorm(embed_dim) | |
self.norm2 = nn.LayerNorm(embed_dim) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward( | |
self, | |
tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None, | |
): | |
# self attention | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn( | |
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask | |
)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
# ffn | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout2(tgt2) | |
return tgt | |
def normalize(in_channels): | |
return torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
# type: ignore | |
def swish(x): | |
return x * torch.sigmoid(x) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channels, out_channels=None): | |
super(ResBlock, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.norm1 = normalize(in_channels) | |
self.conv1 = nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore | |
) | |
self.norm2 = normalize(out_channels) | |
self.conv2 = nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore | |
) | |
if self.in_channels != self.out_channels: | |
self.conv_out = nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 # type: ignore | |
) | |
def forward(self, x_in): | |
x = x_in | |
x = self.norm1(x) | |
x = swish(x) | |
x = self.conv1(x) | |
x = self.norm2(x) | |
x = swish(x) | |
x = self.conv2(x) | |
if self.in_channels != self.out_channels: | |
x_in = self.conv_out(x_in) | |
return x + x_in | |
class Fuse_sft_block(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super().__init__() | |
self.encode_enc = ResBlock(2 * in_ch, out_ch) | |
self.scale = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), | |
) | |
self.shift = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), | |
) | |
def forward(self, enc_feat, dec_feat, w=1): | |
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) | |
scale = self.scale(enc_feat) | |
shift = self.shift(enc_feat) | |
residual = w * (dec_feat * scale + shift) | |
out = dec_feat + residual | |
return out | |
class CodeFormer(VQAutoEncoder): | |
def __init__(self, state_dict): | |
dim_embd = 512 | |
n_head = 8 | |
n_layers = 9 | |
codebook_size = 1024 | |
latent_size = 256 | |
connect_list = ["32", "64", "128", "256"] | |
fix_modules = ["quantize", "generator"] | |
# This is just a guess as I only have one model to look at | |
position_emb = state_dict["position_emb"] | |
dim_embd = position_emb.shape[1] | |
latent_size = position_emb.shape[0] | |
try: | |
n_layers = len( | |
set([x.split(".")[1] for x in state_dict.keys() if "ft_layers" in x]) | |
) | |
except: | |
pass | |
codebook_size = state_dict["quantize.embedding.weight"].shape[0] | |
# This is also just another guess | |
n_head_exp = ( | |
state_dict["ft_layers.0.self_attn.in_proj_weight"].shape[0] // dim_embd | |
) | |
n_head = 2**n_head_exp | |
in_nc = state_dict["encoder.blocks.0.weight"].shape[1] | |
self.model_arch = "CodeFormer" | |
self.sub_type = "Face SR" | |
self.scale = 8 | |
self.in_nc = in_nc | |
self.out_nc = in_nc | |
self.state = state_dict | |
self.supports_fp16 = False | |
self.supports_bf16 = True | |
self.min_size_restriction = 16 | |
super(CodeFormer, self).__init__( | |
512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size | |
) | |
if fix_modules is not None: | |
for module in fix_modules: | |
for param in getattr(self, module).parameters(): | |
param.requires_grad = False | |
self.connect_list = connect_list | |
self.n_layers = n_layers | |
self.dim_embd = dim_embd | |
self.dim_mlp = dim_embd * 2 | |
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) # type: ignore | |
self.feat_emb = nn.Linear(256, self.dim_embd) | |
# transformer | |
self.ft_layers = nn.Sequential( | |
*[ | |
TransformerSALayer( | |
embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0 | |
) | |
for _ in range(self.n_layers) | |
] | |
) | |
# logits_predict head | |
self.idx_pred_layer = nn.Sequential( | |
nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False) | |
) | |
self.channels = { | |
"16": 512, | |
"32": 256, | |
"64": 256, | |
"128": 128, | |
"256": 128, | |
"512": 64, | |
} | |
# after second residual block for > 16, before attn layer for ==16 | |
self.fuse_encoder_block = { | |
"512": 2, | |
"256": 5, | |
"128": 8, | |
"64": 11, | |
"32": 14, | |
"16": 18, | |
} | |
# after first residual block for > 16, before attn layer for ==16 | |
self.fuse_generator_block = { | |
"16": 6, | |
"32": 9, | |
"64": 12, | |
"128": 15, | |
"256": 18, | |
"512": 21, | |
} | |
# fuse_convs_dict | |
self.fuse_convs_dict = nn.ModuleDict() | |
for f_size in self.connect_list: | |
in_ch = self.channels[f_size] | |
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) | |
self.load_state_dict(state_dict) | |
def _init_weights(self, module): | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def forward(self, x, weight=0.5, **kwargs): | |
detach_16 = True | |
code_only = False | |
adain = True | |
# ################### Encoder ##################### | |
enc_feat_dict = {} | |
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] | |
for i, block in enumerate(self.encoder.blocks): | |
x = block(x) | |
if i in out_list: | |
enc_feat_dict[str(x.shape[-1])] = x.clone() | |
lq_feat = x | |
# ################# Transformer ################### | |
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) | |
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1) | |
# BCHW -> BC(HW) -> (HW)BC | |
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1)) | |
query_emb = feat_emb | |
# Transformer encoder | |
for layer in self.ft_layers: | |
query_emb = layer(query_emb, query_pos=pos_emb) | |
# output logits | |
logits = self.idx_pred_layer(query_emb) # (hw)bn | |
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n | |
if code_only: # for training stage II | |
# logits doesn't need softmax before cross_entropy loss | |
return logits, lq_feat | |
# ################# Quantization ################### | |
# if self.training: | |
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) | |
# # b(hw)c -> bc(hw) -> bchw | |
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) | |
# ------------ | |
soft_one_hot = F.softmax(logits, dim=2) | |
_, top_idx = torch.topk(soft_one_hot, 1, dim=2) | |
quant_feat = self.quantize.get_codebook_feat( | |
top_idx, shape=[x.shape[0], 16, 16, 256] # type: ignore | |
) | |
# preserve gradients | |
# quant_feat = lq_feat + (quant_feat - lq_feat).detach() | |
if detach_16: | |
quant_feat = quant_feat.detach() # for training stage III | |
if adain: | |
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) | |
# ################## Generator #################### | |
x = quant_feat | |
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] | |
for i, block in enumerate(self.generator.blocks): | |
x = block(x) | |
if i in fuse_list: # fuse after i-th block | |
f_size = str(x.shape[-1]) | |
if weight > 0: | |
x = self.fuse_convs_dict[f_size]( | |
enc_feat_dict[f_size].detach(), x, weight | |
) | |
out = x | |
# logits doesn't need softmax before cross_entropy loss | |
# return out, logits, lq_feat | |
return out, logits | |