Xue-She Wang
init
0d95f10
raw
history blame
2.32 kB
# pylint: skip-file
# type: ignore
# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501
import torch
from torch import nn
from torch.autograd import Function
fused_act_ext = None
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(
grad_output, empty, out, 3, 1, negative_slope, scale
)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
(out,) = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(
input, bias, empty, 3, 0, negative_slope, scale
)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
(out,) = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale
)
return grad_input, grad_bias, None, None
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2**0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)