Spaces:
Running
Running
# pylint: skip-file | |
# type: ignore | |
import math | |
import random | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .fused_act import FusedLeakyReLU | |
from .stylegan2_arch import ( | |
ConvLayer, | |
EqualConv2d, | |
EqualLinear, | |
ResBlock, | |
ScaledLeakyReLU, | |
StyleGAN2Generator, | |
) | |
class StyleGAN2GeneratorSFT(StyleGAN2Generator): | |
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform). | |
Args: | |
out_size (int): The spatial size of outputs. | |
num_style_feat (int): Channel number of style features. Default: 512. | |
num_mlp (int): Layer number of MLP style layers. Default: 8. | |
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be | |
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). | |
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. | |
narrow (float): The narrow ratio for channels. Default: 1. | |
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. | |
""" | |
def __init__( | |
self, | |
out_size, | |
num_style_feat=512, | |
num_mlp=8, | |
channel_multiplier=2, | |
resample_kernel=(1, 3, 3, 1), | |
lr_mlp=0.01, | |
narrow=1, | |
sft_half=False, | |
): | |
super(StyleGAN2GeneratorSFT, self).__init__( | |
out_size, | |
num_style_feat=num_style_feat, | |
num_mlp=num_mlp, | |
channel_multiplier=channel_multiplier, | |
resample_kernel=resample_kernel, | |
lr_mlp=lr_mlp, | |
narrow=narrow, | |
) | |
self.sft_half = sft_half | |
def forward( | |
self, | |
styles, | |
conditions, | |
input_is_latent=False, | |
noise=None, | |
randomize_noise=True, | |
truncation=1, | |
truncation_latent=None, | |
inject_index=None, | |
return_latents=False, | |
): | |
"""Forward function for StyleGAN2GeneratorSFT. | |
Args: | |
styles (list[Tensor]): Sample codes of styles. | |
conditions (list[Tensor]): SFT conditions to generators. | |
input_is_latent (bool): Whether input is latent style. Default: False. | |
noise (Tensor | None): Input noise or None. Default: None. | |
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. | |
truncation (float): The truncation ratio. Default: 1. | |
truncation_latent (Tensor | None): The truncation latent tensor. Default: None. | |
inject_index (int | None): The injection index for mixing noise. Default: None. | |
return_latents (bool): Whether to return style latents. Default: False. | |
""" | |
# style codes -> latents with Style MLP layer | |
if not input_is_latent: | |
styles = [self.style_mlp(s) for s in styles] | |
# noises | |
if noise is None: | |
if randomize_noise: | |
noise = [None] * self.num_layers # for each style conv layer | |
else: # use the stored noise | |
noise = [ | |
getattr(self.noises, f"noise{i}") for i in range(self.num_layers) | |
] | |
# style truncation | |
if truncation < 1: | |
style_truncation = [] | |
for style in styles: | |
style_truncation.append( | |
truncation_latent + truncation * (style - truncation_latent) | |
) | |
styles = style_truncation | |
# get style latents with injection | |
if len(styles) == 1: | |
inject_index = self.num_latent | |
if styles[0].ndim < 3: | |
# repeat latent code for all the layers | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
else: # used for encoder with different latent code for each layer | |
latent = styles[0] | |
elif len(styles) == 2: # mixing noises | |
if inject_index is None: | |
inject_index = random.randint(1, self.num_latent - 1) | |
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = ( | |
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) | |
) | |
latent = torch.cat([latent1, latent2], 1) | |
# main generation | |
out = self.constant_input(latent.shape[0]) | |
out = self.style_conv1(out, latent[:, 0], noise=noise[0]) | |
skip = self.to_rgb1(out, latent[:, 1]) | |
i = 1 | |
for conv1, conv2, noise1, noise2, to_rgb in zip( | |
self.style_convs[::2], | |
self.style_convs[1::2], | |
noise[1::2], | |
noise[2::2], | |
self.to_rgbs, | |
): | |
out = conv1(out, latent[:, i], noise=noise1) | |
# the conditions may have fewer levels | |
if i < len(conditions): | |
# SFT part to combine the conditions | |
if self.sft_half: # only apply SFT to half of the channels | |
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1) | |
out_sft = out_sft * conditions[i - 1] + conditions[i] | |
out = torch.cat([out_same, out_sft], dim=1) | |
else: # apply SFT to all the channels | |
out = out * conditions[i - 1] + conditions[i] | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space | |
i += 2 | |
image = skip | |
if return_latents: | |
return image, latent | |
else: | |
return image, None | |
class ConvUpLayer(nn.Module): | |
"""Convolutional upsampling layer. It uses bilinear upsampler + Conv. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
kernel_size (int): Size of the convolving kernel. | |
stride (int): Stride of the convolution. Default: 1 | |
padding (int): Zero-padding added to both sides of the input. Default: 0. | |
bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``. | |
bias_init_val (float): Bias initialized value. Default: 0. | |
activate (bool): Whether use activateion. Default: True. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
bias=True, | |
bias_init_val=0, | |
activate=True, | |
): | |
super(ConvUpLayer, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
# self.scale is used to scale the convolution weights, which is related to the common initializations. | |
self.scale = 1 / math.sqrt(in_channels * kernel_size**2) | |
self.weight = nn.Parameter( | |
torch.randn(out_channels, in_channels, kernel_size, kernel_size) | |
) | |
if bias and not activate: | |
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) | |
else: | |
self.register_parameter("bias", None) | |
# activation | |
if activate: | |
if bias: | |
self.activation = FusedLeakyReLU(out_channels) | |
else: | |
self.activation = ScaledLeakyReLU(0.2) | |
else: | |
self.activation = None | |
def forward(self, x): | |
# bilinear upsample | |
out = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False) | |
# conv | |
out = F.conv2d( | |
out, | |
self.weight * self.scale, | |
bias=self.bias, | |
stride=self.stride, | |
padding=self.padding, | |
) | |
# activation | |
if self.activation is not None: | |
out = self.activation(out) | |
return out | |
class ResUpBlock(nn.Module): | |
"""Residual block with upsampling. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
""" | |
def __init__(self, in_channels, out_channels): | |
super(ResUpBlock, self).__init__() | |
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) | |
self.conv2 = ConvUpLayer( | |
in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True | |
) | |
self.skip = ConvUpLayer( | |
in_channels, out_channels, 1, bias=False, activate=False | |
) | |
def forward(self, x): | |
out = self.conv1(x) | |
out = self.conv2(out) | |
skip = self.skip(x) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class GFPGANv1(nn.Module): | |
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT. | |
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. | |
Args: | |
out_size (int): The spatial size of outputs. | |
num_style_feat (int): Channel number of style features. Default: 512. | |
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be | |
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). | |
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None. | |
fix_decoder (bool): Whether to fix the decoder. Default: True. | |
num_mlp (int): Layer number of MLP style layers. Default: 8. | |
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. | |
input_is_latent (bool): Whether input is latent style. Default: False. | |
different_w (bool): Whether to use different latent w for different layers. Default: False. | |
narrow (float): The narrow ratio for channels. Default: 1. | |
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. | |
""" | |
def __init__( | |
self, | |
out_size, | |
num_style_feat=512, | |
channel_multiplier=1, | |
resample_kernel=(1, 3, 3, 1), | |
decoder_load_path=None, | |
fix_decoder=True, | |
# for stylegan decoder | |
num_mlp=8, | |
lr_mlp=0.01, | |
input_is_latent=False, | |
different_w=False, | |
narrow=1, | |
sft_half=False, | |
): | |
super(GFPGANv1, self).__init__() | |
self.input_is_latent = input_is_latent | |
self.different_w = different_w | |
self.num_style_feat = num_style_feat | |
unet_narrow = narrow * 0.5 # by default, use a half of input channels | |
channels = { | |
"4": int(512 * unet_narrow), | |
"8": int(512 * unet_narrow), | |
"16": int(512 * unet_narrow), | |
"32": int(512 * unet_narrow), | |
"64": int(256 * channel_multiplier * unet_narrow), | |
"128": int(128 * channel_multiplier * unet_narrow), | |
"256": int(64 * channel_multiplier * unet_narrow), | |
"512": int(32 * channel_multiplier * unet_narrow), | |
"1024": int(16 * channel_multiplier * unet_narrow), | |
} | |
self.log_size = int(math.log(out_size, 2)) | |
first_out_size = 2 ** (int(math.log(out_size, 2))) | |
self.conv_body_first = ConvLayer( | |
3, channels[f"{first_out_size}"], 1, bias=True, activate=True | |
) | |
# downsample | |
in_channels = channels[f"{first_out_size}"] | |
self.conv_body_down = nn.ModuleList() | |
for i in range(self.log_size, 2, -1): | |
out_channels = channels[f"{2**(i - 1)}"] | |
self.conv_body_down.append( | |
ResBlock(in_channels, out_channels, resample_kernel) | |
) | |
in_channels = out_channels | |
self.final_conv = ConvLayer( | |
in_channels, channels["4"], 3, bias=True, activate=True | |
) | |
# upsample | |
in_channels = channels["4"] | |
self.conv_body_up = nn.ModuleList() | |
for i in range(3, self.log_size + 1): | |
out_channels = channels[f"{2**i}"] | |
self.conv_body_up.append(ResUpBlock(in_channels, out_channels)) | |
in_channels = out_channels | |
# to RGB | |
self.toRGB = nn.ModuleList() | |
for i in range(3, self.log_size + 1): | |
self.toRGB.append( | |
EqualConv2d( | |
channels[f"{2**i}"], | |
3, | |
1, | |
stride=1, | |
padding=0, | |
bias=True, | |
bias_init_val=0, | |
) | |
) | |
if different_w: | |
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat | |
else: | |
linear_out_channel = num_style_feat | |
self.final_linear = EqualLinear( | |
channels["4"] * 4 * 4, | |
linear_out_channel, | |
bias=True, | |
bias_init_val=0, | |
lr_mul=1, | |
activation=None, | |
) | |
# the decoder: stylegan2 generator with SFT modulations | |
self.stylegan_decoder = StyleGAN2GeneratorSFT( | |
out_size=out_size, | |
num_style_feat=num_style_feat, | |
num_mlp=num_mlp, | |
channel_multiplier=channel_multiplier, | |
resample_kernel=resample_kernel, | |
lr_mlp=lr_mlp, | |
narrow=narrow, | |
sft_half=sft_half, | |
) | |
# load pre-trained stylegan2 model if necessary | |
if decoder_load_path: | |
self.stylegan_decoder.load_state_dict( | |
torch.load( | |
decoder_load_path, map_location=lambda storage, loc: storage | |
)["params_ema"] | |
) | |
# fix decoder without updating params | |
if fix_decoder: | |
for _, param in self.stylegan_decoder.named_parameters(): | |
param.requires_grad = False | |
# for SFT modulations (scale and shift) | |
self.condition_scale = nn.ModuleList() | |
self.condition_shift = nn.ModuleList() | |
for i in range(3, self.log_size + 1): | |
out_channels = channels[f"{2**i}"] | |
if sft_half: | |
sft_out_channels = out_channels | |
else: | |
sft_out_channels = out_channels * 2 | |
self.condition_scale.append( | |
nn.Sequential( | |
EqualConv2d( | |
out_channels, | |
out_channels, | |
3, | |
stride=1, | |
padding=1, | |
bias=True, | |
bias_init_val=0, | |
), | |
ScaledLeakyReLU(0.2), | |
EqualConv2d( | |
out_channels, | |
sft_out_channels, | |
3, | |
stride=1, | |
padding=1, | |
bias=True, | |
bias_init_val=1, | |
), | |
) | |
) | |
self.condition_shift.append( | |
nn.Sequential( | |
EqualConv2d( | |
out_channels, | |
out_channels, | |
3, | |
stride=1, | |
padding=1, | |
bias=True, | |
bias_init_val=0, | |
), | |
ScaledLeakyReLU(0.2), | |
EqualConv2d( | |
out_channels, | |
sft_out_channels, | |
3, | |
stride=1, | |
padding=1, | |
bias=True, | |
bias_init_val=0, | |
), | |
) | |
) | |
def forward( | |
self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs | |
): | |
"""Forward function for GFPGANv1. | |
Args: | |
x (Tensor): Input images. | |
return_latents (bool): Whether to return style latents. Default: False. | |
return_rgb (bool): Whether return intermediate rgb images. Default: True. | |
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. | |
""" | |
conditions = [] | |
unet_skips = [] | |
out_rgbs = [] | |
# encoder | |
feat = self.conv_body_first(x) | |
for i in range(self.log_size - 2): | |
feat = self.conv_body_down[i](feat) | |
unet_skips.insert(0, feat) | |
feat = self.final_conv(feat) | |
# style code | |
style_code = self.final_linear(feat.view(feat.size(0), -1)) | |
if self.different_w: | |
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat) | |
# decode | |
for i in range(self.log_size - 2): | |
# add unet skip | |
feat = feat + unet_skips[i] | |
# ResUpLayer | |
feat = self.conv_body_up[i](feat) | |
# generate scale and shift for SFT layers | |
scale = self.condition_scale[i](feat) | |
conditions.append(scale.clone()) | |
shift = self.condition_shift[i](feat) | |
conditions.append(shift.clone()) | |
# generate rgb images | |
if return_rgb: | |
out_rgbs.append(self.toRGB[i](feat)) | |
# decoder | |
image, _ = self.stylegan_decoder( | |
[style_code], | |
conditions, | |
return_latents=return_latents, | |
input_is_latent=self.input_is_latent, | |
randomize_noise=randomize_noise, | |
) | |
return image, out_rgbs | |
class FacialComponentDiscriminator(nn.Module): | |
"""Facial component (eyes, mouth, noise) discriminator used in GFPGAN.""" | |
def __init__(self): | |
super(FacialComponentDiscriminator, self).__init__() | |
# It now uses a VGG-style architectrue with fixed model size | |
self.conv1 = ConvLayer( | |
3, | |
64, | |
3, | |
downsample=False, | |
resample_kernel=(1, 3, 3, 1), | |
bias=True, | |
activate=True, | |
) | |
self.conv2 = ConvLayer( | |
64, | |
128, | |
3, | |
downsample=True, | |
resample_kernel=(1, 3, 3, 1), | |
bias=True, | |
activate=True, | |
) | |
self.conv3 = ConvLayer( | |
128, | |
128, | |
3, | |
downsample=False, | |
resample_kernel=(1, 3, 3, 1), | |
bias=True, | |
activate=True, | |
) | |
self.conv4 = ConvLayer( | |
128, | |
256, | |
3, | |
downsample=True, | |
resample_kernel=(1, 3, 3, 1), | |
bias=True, | |
activate=True, | |
) | |
self.conv5 = ConvLayer( | |
256, | |
256, | |
3, | |
downsample=False, | |
resample_kernel=(1, 3, 3, 1), | |
bias=True, | |
activate=True, | |
) | |
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False) | |
def forward(self, x, return_feats=False, **kwargs): | |
"""Forward function for FacialComponentDiscriminator. | |
Args: | |
x (Tensor): Input images. | |
return_feats (bool): Whether to return intermediate features. Default: False. | |
""" | |
feat = self.conv1(x) | |
feat = self.conv3(self.conv2(feat)) | |
rlt_feats = [] | |
if return_feats: | |
rlt_feats.append(feat.clone()) | |
feat = self.conv5(self.conv4(feat)) | |
if return_feats: | |
rlt_feats.append(feat.clone()) | |
out = self.final_conv(feat) | |
if return_feats: | |
return out, rlt_feats | |
else: | |
return out, None | |