viv commited on
Commit
87e0cfe
·
verified ·
1 Parent(s): 3adc3e2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+
5
+ # Load the trained model and tokenizer
6
+ model_path = 'viv/AIKIA'
7
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
9
+
10
+ # Preprocessing function for Greek text
11
+ def preprocessing_greek(text):
12
+ # Your preprocessing steps
13
+ text = text.lower() # Example step
14
+ return text
15
+
16
+ # Prediction function
17
+ def predict(sentence):
18
+ model.eval()
19
+ preprocessed_sentence = preprocessing_greek(sentence)
20
+ inputs = tokenizer(preprocessed_sentence, return_tensors="pt")
21
+ with torch.no_grad():
22
+ outputs = model(**inputs)
23
+ logits = outputs.logits
24
+ probabilities = torch.nn.functional.softmax(logits, dim=1)
25
+ predicted_label = torch.argmax(probabilities, dim=1).item()
26
+ labels_map = {0: 'NOT', 1: 'OFFENSIVE'}
27
+ return labels_map[predicted_label], probabilities.tolist()
28
+
29
+ # Gradio Interface
30
+ iface = gr.Interface(fn=predict, inputs="text", outputs=["text", "json"])
31
+ iface.launch()