Vivien
Links added in the sidebar
03236d3
raw
history blame
6.87 kB
import numpy as np
from PIL import ImageDraw, Image, ImageFont
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import streamlit as st
FONTS = [
"Font: Serif - EBGaramond",
"Font: Serif - Cinzel",
"Font: Sans - Roboto",
"Font: Sans - Lato",
"Font: Display - Lobster",
"Font: Display - LilitaOne",
"Font: Handwriting - GreatVibes",
"Font: Handwriting - Pacifico",
"Font: Mono - Inconsolata",
"Font: Mono - Cutive",
]
def hex_to_rgb(hex):
rgb = []
for i in (0, 2, 4):
decimal = int(hex[i : i + 2], 16)
rgb.append(decimal)
return tuple(rgb)
@st.cache(allow_output_mutation=True)
def load():
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
return model, feature_extractor
model, feature_extractor = load()
def compute_depth(image):
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
return prediction.cpu().numpy()[0, 0, :, :]
def get_mask1(
shape, x, y, caption, font=None, font_size=0.08, color=(0, 0, 0), alpha=0.8
):
img_text = Image.new("RGBA", (shape[1], shape[0]), (0, 0, 0, 0))
draw = ImageDraw.Draw(img_text)
font = ImageFont.truetype(font, int(font_size * shape[1]))
draw.text(
(x * shape[1], (1 - y) * shape[0]),
caption,
fill=(*color, int(max(min(1, alpha), 0) * 255)),
font=font,
)
text = np.array(img_text)
mask1 = np.dot(np.expand_dims(text[:, :, -1] / 255, -1), np.ones((1, 3)))
return text[:, :, :-1], mask1
def get_mask2(depth_map, depth):
return np.expand_dims(
(depth_map[:, :] < depth * np.min(depth_map) + (1 - depth) * np.max(depth_map)),
-1,
)
def add_caption(
img,
caption,
depth_map=None,
x=0.5,
y=0.5,
depth=0.5,
font_size=50,
color=(255, 255, 255),
font="",
alpha=1,
):
text, mask1 = get_mask1(
img.shape,
x,
y,
caption,
font=font,
font_size=font_size,
color=color,
alpha=alpha,
)
mask2 = get_mask2(depth_map, depth)
mask = mask1 * np.dot(mask2, np.ones((1, 3)))
return ((1 - mask) * img + mask * text).astype(np.uint8)
@st.cache(max_entries=30, show_spinner=False)
def load_img(uploaded_file):
if uploaded_file is None:
img = Image.open("pulp.jpg")
default = True
else:
img = Image.open(uploaded_file)
if img.size[0] > 800 or img.size[1] > 800:
if img.size[0] < img.size[1]:
new_size = (int(800 * img.size[0] / img.size[1]), 800)
else:
new_size = (800, int(800 * img.size[1] / img.size[0]))
img = img.resize(new_size)
default = False
return np.array(img), compute_depth(img), default
def main():
st.markdown(
"""
<style>
label{
height: 0px !important;
min-height: 0px !important;
margin-bottom: 0px !important;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
# Depth-aware text addition
Add text ***inside*** an image!
Upload an image, enter some text and adjust the ***depth*** where you want the text to be displayed. You can also define its location and appearance (font, color, transparency and size).
Built with [PyTorch](https://pytorch.org/), Intel's [MiDaS model](https://pytorch.org/hub/intelisl_midas_v2/), [Streamlit](https://streamlit.io/), [pillow](https://python-pillow.org/) and inspired by the official [video](https://youtu.be/eTa1jHk1Lxc) of *Jenny of Oldstones* by Florence + the Machine
To go further:
- [blog post](https://vivien000.github.io/blog/journal/adding-text-inside-pictures-and-videos.html)
- [notebook](https://colab.research.google.com/github/vivien000/depth-aware_captioning/blob/master/Depth_aware_Video_Captioning.ipynb) for videos
- [examples](https://youtu.be/RtkBplRuWhg?list=PLlPB25tBWqtVhj4Ink8hl9Evc2dlIX4Jh) of videos
"""
)
uploaded_file = st.file_uploader("", type=["jpg", "jpeg"])
with st.spinner("Analyzing the image - Please wait a few seconds"):
img, depth_map, default = load_img(uploaded_file)
if default:
x0, y0, alpha0, font_size0, depth0, font0 = 0.02, 0.68, 0.99, 0.07, 0.12, 4
text0 = "Pulp Fiction"
else:
x0, y0, alpha0, font_size0, depth0, font0 = 0.1, 0.9, 0.8, 0.08, 0.5, 0
text0 = "Enter your text here"
colA, colB, colC = st.columns((13, 1, 1))
with colA:
text = st.text_input("", text0)
with colB:
st.markdown("Color:")
with colC:
color = st.color_picker("", value="#FFFFFF")
col1, _, col2 = st.columns((4, 1, 4))
with col1:
depth = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=depth0,
format_func=lambda x: "Foreground"
if x == 0.0
else "Background"
if x == 1.0
else "",
)
x = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=x0,
format_func=lambda x: "Left" if x == 0.0 else "Right" if x == 1.0 else "",
)
y = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=y0,
format_func=lambda x: "Bottom" if x == 0.0 else "Top" if x == 1.0 else "",
)
with col2:
font_size = st.select_slider(
"",
options=[0.04 + i / 100 for i in range(0, 17)],
value=font_size0,
format_func=lambda x: "Small font"
if x == 0.04
else "Large font"
if x == 0.2
else "",
)
alpha = st.select_slider(
"",
options=[i / 100 for i in range(101)],
value=alpha0,
format_func=lambda x: "Transparent"
if x == 0.0
else "Opaque"
if x == 1.0
else "",
)
font = st.selectbox("", FONTS, index=font0)
font = f"fonts/{font[6:]}.ttf"
captioned = add_caption(
img,
text,
x=x,
y=y,
depth=depth,
depth_map=depth_map,
font=font,
font_size=font_size,
alpha=alpha,
color=hex_to_rgb(color[1:]),
)
st.image(captioned)
if __name__ == "__main__":
main()