Spaces:
Running
Running
Vivien
commited on
Commit
·
fd7f424
1
Parent(s):
3370440
Switch to transformers
Browse files- .gitignore +0 -1
- app.py +31 -57
- packages.txt +0 -1
- requirements.txt +2 -3
.gitignore
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
result.jpg
|
|
|
|
app.py
CHANGED
@@ -1,18 +1,9 @@
|
|
1 |
import numpy as np
|
2 |
-
import
|
|
|
3 |
import torch
|
4 |
import streamlit as st
|
5 |
|
6 |
-
device = torch.device("cpu")
|
7 |
-
|
8 |
-
DEBUG = False
|
9 |
-
if DEBUG:
|
10 |
-
cache_kwargs = {"max_entries": 30}
|
11 |
-
model_name = "MiDaS_small"
|
12 |
-
else:
|
13 |
-
cache_kwargs = {"show_spinner": False, "max_entries": 30}
|
14 |
-
model_name = "DPT_Large"
|
15 |
-
|
16 |
FONTS = [
|
17 |
"Font: Serif - EBGaramond",
|
18 |
"Font: Serif - Cinzel",
|
@@ -35,41 +26,36 @@ def hex_to_rgb(hex):
|
|
35 |
return tuple(rgb)
|
36 |
|
37 |
|
38 |
-
@st.
|
39 |
-
def load(
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
44 |
-
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
45 |
-
transform = midas_transforms.dpt_transform
|
46 |
-
else:
|
47 |
-
transform = midas_transforms.small_transform
|
48 |
-
return midas, transform
|
49 |
|
50 |
|
51 |
-
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
with torch.no_grad():
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
65 |
|
66 |
|
67 |
def get_mask1(
|
68 |
shape, x, y, caption, font=None, font_size=0.08, color=(0, 0, 0), alpha=0.8
|
69 |
):
|
70 |
-
img_text =
|
71 |
-
draw =
|
72 |
-
font =
|
73 |
draw.text(
|
74 |
(x * shape[1], (1 - y) * shape[0]),
|
75 |
caption,
|
@@ -78,8 +64,7 @@ def get_mask1(
|
|
78 |
)
|
79 |
text = np.array(img_text)
|
80 |
mask1 = np.dot(np.expand_dims(text[:, :, -1] / 255, -1), np.ones((1, 3)))
|
81 |
-
|
82 |
-
return text, mask1
|
83 |
|
84 |
|
85 |
def get_mask2(depth_map, depth):
|
@@ -101,8 +86,6 @@ def add_caption(
|
|
101 |
font="",
|
102 |
alpha=1,
|
103 |
):
|
104 |
-
if depth_map is None:
|
105 |
-
depth_map = compute_depth(img)
|
106 |
text, mask1 = get_mask1(
|
107 |
img.shape,
|
108 |
x,
|
@@ -119,13 +102,13 @@ def add_caption(
|
|
119 |
return ((1 - mask) * img + mask * text).astype(np.uint8)
|
120 |
|
121 |
|
122 |
-
@st.
|
123 |
def load_img(uploaded_file):
|
124 |
if uploaded_file is None:
|
125 |
-
img =
|
126 |
default = True
|
127 |
else:
|
128 |
-
img =
|
129 |
if img.size[0] > 800 or img.size[1] > 800:
|
130 |
if img.size[0] < img.size[1]:
|
131 |
new_size = (int(800 * img.size[0] / img.size[1]), 800)
|
@@ -133,7 +116,7 @@ def load_img(uploaded_file):
|
|
133 |
new_size = (800, int(800 * img.size[1] / img.size[0]))
|
134 |
img = img.resize(new_size)
|
135 |
default = False
|
136 |
-
return np.array(img), default
|
137 |
|
138 |
|
139 |
def main():
|
@@ -163,13 +146,11 @@ def main():
|
|
163 |
)
|
164 |
|
165 |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg"])
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
del uploaded_file
|
170 |
|
171 |
if default:
|
172 |
-
x0, y0, alpha0, font_size0, depth0, font0 = 0.02, 0.68, 0.99, 0.07, 0.
|
173 |
text0 = "Pulp Fiction"
|
174 |
else:
|
175 |
x0, y0, alpha0, font_size0, depth0, font0 = 0.1, 0.9, 0.8, 0.08, 0.5, 0
|
@@ -243,6 +224,7 @@ def main():
|
|
243 |
x=x,
|
244 |
y=y,
|
245 |
depth=depth,
|
|
|
246 |
font=font,
|
247 |
font_size=font_size,
|
248 |
alpha=alpha,
|
@@ -251,14 +233,6 @@ def main():
|
|
251 |
|
252 |
st.image(captioned)
|
253 |
|
254 |
-
# PIL.Image.fromarray(captioned).save("result.jpg")
|
255 |
-
# with open("result.jpg", "rb") as file:
|
256 |
-
# btn = st.download_button(
|
257 |
-
# label="Download image", data=file, file_name="result.jpg", mime="image/jpeg"
|
258 |
-
# )
|
259 |
-
|
260 |
-
del captioned, img
|
261 |
-
|
262 |
|
263 |
if __name__ == "__main__":
|
264 |
main()
|
|
|
1 |
import numpy as np
|
2 |
+
from PIL import ImageDraw, Image, ImageFont
|
3 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
4 |
import torch
|
5 |
import streamlit as st
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
FONTS = [
|
8 |
"Font: Serif - EBGaramond",
|
9 |
"Font: Serif - Cinzel",
|
|
|
26 |
return tuple(rgb)
|
27 |
|
28 |
|
29 |
+
@st.cache(allow_output_mutation=True)
|
30 |
+
def load():
|
31 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
32 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
33 |
+
return model, feature_extractor
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
+
model, feature_extractor = load()
|
37 |
|
38 |
|
39 |
+
def compute_depth(image):
|
40 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
41 |
with torch.no_grad():
|
42 |
+
outputs = model(**inputs)
|
43 |
+
predicted_depth = outputs.predicted_depth
|
44 |
+
prediction = torch.nn.functional.interpolate(
|
45 |
+
predicted_depth.unsqueeze(1),
|
46 |
+
size=image.size[::-1],
|
47 |
+
mode="bicubic",
|
48 |
+
align_corners=False,
|
49 |
+
)
|
50 |
+
return prediction.cpu().numpy()[0, 0, :, :]
|
51 |
|
52 |
|
53 |
def get_mask1(
|
54 |
shape, x, y, caption, font=None, font_size=0.08, color=(0, 0, 0), alpha=0.8
|
55 |
):
|
56 |
+
img_text = Image.new("RGBA", (shape[1], shape[0]), (0, 0, 0, 0))
|
57 |
+
draw = ImageDraw.Draw(img_text)
|
58 |
+
font = ImageFont.truetype(font, int(font_size * shape[1]))
|
59 |
draw.text(
|
60 |
(x * shape[1], (1 - y) * shape[0]),
|
61 |
caption,
|
|
|
64 |
)
|
65 |
text = np.array(img_text)
|
66 |
mask1 = np.dot(np.expand_dims(text[:, :, -1] / 255, -1), np.ones((1, 3)))
|
67 |
+
return text[:, :, :-1], mask1
|
|
|
68 |
|
69 |
|
70 |
def get_mask2(depth_map, depth):
|
|
|
86 |
font="",
|
87 |
alpha=1,
|
88 |
):
|
|
|
|
|
89 |
text, mask1 = get_mask1(
|
90 |
img.shape,
|
91 |
x,
|
|
|
102 |
return ((1 - mask) * img + mask * text).astype(np.uint8)
|
103 |
|
104 |
|
105 |
+
@st.cache(max_entries=30, show_spinner=False)
|
106 |
def load_img(uploaded_file):
|
107 |
if uploaded_file is None:
|
108 |
+
img = Image.open("pulp.jpg")
|
109 |
default = True
|
110 |
else:
|
111 |
+
img = Image.open(uploaded_file)
|
112 |
if img.size[0] > 800 or img.size[1] > 800:
|
113 |
if img.size[0] < img.size[1]:
|
114 |
new_size = (int(800 * img.size[0] / img.size[1]), 800)
|
|
|
116 |
new_size = (800, int(800 * img.size[1] / img.size[0]))
|
117 |
img = img.resize(new_size)
|
118 |
default = False
|
119 |
+
return np.array(img), compute_depth(img), default
|
120 |
|
121 |
|
122 |
def main():
|
|
|
146 |
)
|
147 |
|
148 |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg"])
|
149 |
+
with st.spinner("Analyzing the image - Please wait a few seconds"):
|
150 |
+
img, depth_map, default = load_img(uploaded_file)
|
|
|
|
|
151 |
|
152 |
if default:
|
153 |
+
x0, y0, alpha0, font_size0, depth0, font0 = 0.02, 0.68, 0.99, 0.07, 0.12, 4
|
154 |
text0 = "Pulp Fiction"
|
155 |
else:
|
156 |
x0, y0, alpha0, font_size0, depth0, font0 = 0.1, 0.9, 0.8, 0.08, 0.5, 0
|
|
|
224 |
x=x,
|
225 |
y=y,
|
226 |
depth=depth,
|
227 |
+
depth_map=depth_map,
|
228 |
font=font,
|
229 |
font_size=font_size,
|
230 |
alpha=alpha,
|
|
|
233 |
|
234 |
st.image(captioned)
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
if __name__ == "__main__":
|
238 |
main()
|
packages.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
libgl1
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
numpy
|
2 |
torch
|
3 |
-
|
4 |
-
pillow
|
5 |
-
opencv-python
|
|
|
1 |
numpy
|
2 |
torch
|
3 |
+
transformers
|
4 |
+
pillow
|
|