vjosap commited on
Commit
7fac43e
·
verified ·
1 Parent(s): 0b342db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -11
app.py CHANGED
@@ -72,6 +72,9 @@ def preprocessing(input_text, tokenizer):
72
  # truncation=True
73
  # )
74
 
 
 
 
75
  # initialising the Softmax function
76
  soft = Softmax()
77
 
@@ -102,44 +105,54 @@ def load_model(model_name):
102
  return pipeline("text-classification", model=model_name, return_all_scores=True)
103
 
104
 
105
- page_element="""
106
  <style>
107
- [data-testid="stAppViewContainer"]{
108
  background-image: url("https://w7.pngwing.com/pngs/980/181/png-transparent-flat-white-background-abstract-flat-white-thumbnail.png");
109
  background-size: cover;
110
  }
111
- [data-testid="stHeader"]{
112
- background-color: rgba(0,0,0,0);
113
  }
114
- [data-testid="stToolbar"]{
115
  right: 2rem;
116
  background-image: url("https://img.freepik.com/premium-vector/burger-icon-isolated-illustration_92753-2926.jpg?w=2000");
117
  background-size: cover;
118
  }
 
 
 
119
  </style>
120
  """
 
 
121
  st.markdown(page_element, unsafe_allow_html=True)
122
 
 
123
  # File upload section
124
  st.title("Moral Values Detection App")
125
  st.markdown("Authors: [Vjosa Preniqi](https://scholar.google.com/citations?user=CLZ3LL4AAAAJ&hl=en) and [Iacopo Ghinassi](https://scholar.google.com/citations?user=ANXW5EAAAAAJ&hl=en).")
126
  st.header("Introduction", divider = "red")
127
- st.markdown("""This app implements the models described in the papers [MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions](https://dl.acm.org/doi/abs/10.1145/3677525.3678694) and [Automatic Detection of Moral Values in Music Lyrics](https://arxiv.org/abs/2407.18787). With this app, you can automatically predict and label text or music lyrics with 10 moral categories. To use it, upload a CSV file with a single column named "text" (for regular text) or "lyrics" (for music lyrics). Each row should have the text or lyric you want to analyse. Keep in mind, the process may take up to 10 seconds per entry, and the models work best with social media content and music lyrics. Once the analysis is done, the app will show a table with the predicted probabilities for each moral value. You can download this table using the provided button. Note that some moral values might have consistently low probabilities. If that's the case, you may need to use a lower threshold to identify them—check the original papers for more details.""")
128
- model_type = st.radio("Choose the type of text for prediction", ('text', 'lyrics'))
129
 
130
  # Warning if model type is not selected before file upload
131
  if not model_type:
132
- st.warning("Please pick the text type for prediction first.")
133
 
134
  # File upload section
135
- st.write(f"Upload a CSV file with a column named 'text' or 'lyrics' for based on the model type you chose.")
136
 
137
- uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
138
 
139
 
140
  if uploaded_file is not None:
141
  # Read CSV
142
- df = pd.read_csv(uploaded_file)
 
 
 
 
143
 
144
  # Validation: Check if the correct column exists based on the selected model type
145
  expected_column = 'lyrics' if model_type == 'lyrics' else 'text'
 
72
  # truncation=True
73
  # )
74
 
75
+ def convert_excel_to_csv(file):
76
+ return pd.read_excel(file)
77
+
78
  # initialising the Softmax function
79
  soft = Softmax()
80
 
 
105
  return pipeline("text-classification", model=model_name, return_all_scores=True)
106
 
107
 
108
+ page_element = """
109
  <style>
110
+ [data-testid="stAppViewContainer"] {
111
  background-image: url("https://w7.pngwing.com/pngs/980/181/png-transparent-flat-white-background-abstract-flat-white-thumbnail.png");
112
  background-size: cover;
113
  }
114
+ [data-testid="stHeader"] {
115
+ background-color: rgba(0, 0, 0, 0);
116
  }
117
+ [data-testid="stToolbar"] {
118
  right: 2rem;
119
  background-image: url("https://img.freepik.com/premium-vector/burger-icon-isolated-illustration_92753-2926.jpg?w=2000");
120
  background-size: cover;
121
  }
122
+ body {
123
+ color: black !important; /* Set font color to black */
124
+ }
125
  </style>
126
  """
127
+
128
+ # Add the style to your Streamlit app
129
  st.markdown(page_element, unsafe_allow_html=True)
130
 
131
+
132
  # File upload section
133
  st.title("Moral Values Detection App")
134
  st.markdown("Authors: [Vjosa Preniqi](https://scholar.google.com/citations?user=CLZ3LL4AAAAJ&hl=en) and [Iacopo Ghinassi](https://scholar.google.com/citations?user=ANXW5EAAAAAJ&hl=en).")
135
  st.header("Introduction", divider = "red")
136
+ st.markdown("""This app implements the models described in the papers [MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions](https://dl.acm.org/doi/abs/10.1145/3677525.3678694) and [Automatic Detection of Moral Values in Music Lyrics](https://arxiv.org/abs/2407.18787). With this app, you can automatically predict and label text or music lyrics with 10 moral categories. To use it, upload a CSV or Excel file with a single column named "text" (for regular text) or "lyrics" (for music lyrics). Each row should have the text or lyric you want to analyse. Keep in mind, the process may take up to 10 seconds per entry, and the models work best with social media content and music lyrics. Once the analysis is done, the app will show a table with the predicted probabilities for each moral value. You can download this table using the provided button. Note that some moral values might have consistently low probabilities. If that's the case, you may need to use a lower threshold to identify them—check the original papers for more details.""")
137
+ model_type = st.radio("Select the content type to choose the appropriate prediction model", ('text', 'lyrics'))
138
 
139
  # Warning if model type is not selected before file upload
140
  if not model_type:
141
+ st.warning("Please pick the content type for prediction first.")
142
 
143
  # File upload section
144
+ st.write(f"Upload a CSV or Excel file with a column named 'text' or 'lyrics' based on the model type you chose.")
145
 
146
+ uploaded_file = st.file_uploader("Choose a CSV or Excel file", type=["csv", "xlsx"])
147
 
148
 
149
  if uploaded_file is not None:
150
  # Read CSV
151
+ file_extension = uploaded_file.name.split('.')[-1].lower()
152
+ if file_extension == "csv":
153
+ df = pd.read_csv(uploaded_file)
154
+ elif file_extension == "xlsx":
155
+ df = convert_excel_to_csv(uploaded_file)
156
 
157
  # Validation: Check if the correct column exists based on the selected model type
158
  expected_column = 'lyrics' if model_type == 'lyrics' else 'text'