File size: 6,840 Bytes
87ad8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d2ab6
 
 
 
 
87ad8f4
 
 
 
 
20d2ab6
 
 
 
87ad8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import cv2
import os
import torch
from einops import rearrange
from annotator.util import annotator_ckpts_path


class Network(torch.nn.Module):
    def __init__(self, model_path):
        super().__init__()

        self.netVggOne = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False)
        )

        self.netVggTwo = torch.nn.Sequential(
            torch.nn.MaxPool2d(kernel_size=2, stride=2),
            torch.nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False)
        )

        self.netVggThr = torch.nn.Sequential(
            torch.nn.MaxPool2d(kernel_size=2, stride=2),
            torch.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False)
        )

        self.netVggFou = torch.nn.Sequential(
            torch.nn.MaxPool2d(kernel_size=2, stride=2),
            torch.nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False)
        )

        self.netVggFiv = torch.nn.Sequential(
            torch.nn.MaxPool2d(kernel_size=2, stride=2),
            torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False),
            torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(inplace=False)
        )

        self.netScoreOne = torch.nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0)
        self.netScoreTwo = torch.nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0)
        self.netScoreThr = torch.nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0)
        self.netScoreFou = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
        self.netScoreFiv = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)

        self.netCombine = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0),
            torch.nn.Sigmoid()
        )

        self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(model_path).items()})

    def forward(self, tenInput):
        tenInput = tenInput * 255.0
        tenInput = tenInput - torch.tensor(data=[104.00698793, 116.66876762, 122.67891434], dtype=tenInput.dtype, device=tenInput.device).view(1, 3, 1, 1)

        tenVggOne = self.netVggOne(tenInput)
        tenVggTwo = self.netVggTwo(tenVggOne)
        tenVggThr = self.netVggThr(tenVggTwo)
        tenVggFou = self.netVggFou(tenVggThr)
        tenVggFiv = self.netVggFiv(tenVggFou)

        tenScoreOne = self.netScoreOne(tenVggOne)
        tenScoreTwo = self.netScoreTwo(tenVggTwo)
        tenScoreThr = self.netScoreThr(tenVggThr)
        tenScoreFou = self.netScoreFou(tenVggFou)
        tenScoreFiv = self.netScoreFiv(tenVggFiv)

        tenScoreOne = torch.nn.functional.interpolate(input=tenScoreOne, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
        tenScoreTwo = torch.nn.functional.interpolate(input=tenScoreTwo, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
        tenScoreThr = torch.nn.functional.interpolate(input=tenScoreThr, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
        tenScoreFou = torch.nn.functional.interpolate(input=tenScoreFou, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
        tenScoreFiv = torch.nn.functional.interpolate(input=tenScoreFiv, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)

        return self.netCombine(torch.cat([ tenScoreOne, tenScoreTwo, tenScoreThr, tenScoreFou, tenScoreFiv ], 1))


class HEDdetector:
    def __init__(self):
        remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/network-bsds500.pth"
        modelpath = os.path.join(annotator_ckpts_path, "network-bsds500.pth")
        if not os.path.exists(modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
        if torch.cuda.is_available():
            self.netNetwork = Network(modelpath).cuda().eval()
        else:
            self.netNetwork = Network(modelpath).eval()
            

    def __call__(self, input_image):
        assert input_image.ndim == 3
        input_image = input_image[:, :, ::-1].copy()
        with torch.no_grad():
            if torch.cuda.is_available():
                image_hed = torch.from_numpy(input_image).float().cuda()
            else:
                image_hed = torch.from_numpy(input_image).float()
            image_hed = image_hed / 255.0
            image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
            edge = self.netNetwork(image_hed)[0]
            edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
            return edge[0]


def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z