Spaces:
Runtime error
Runtime error
File size: 14,726 Bytes
557fb53 99c5692 557fb53 c914273 6ba247f c914273 4b8361a c914273 4b8361a 99c5692 557fb53 4b8361a c914273 3b31903 557fb53 3b31903 557fb53 2e21b83 248f682 c914273 3b31903 c914273 2e21b83 d68daac 2e21b83 d68daac c914273 557fb53 0030bc6 248f682 c914273 557fb53 c914273 3b31903 557fb53 c914273 557fb53 c914273 9f53273 ba35f85 c914273 557fb53 c914273 557fb53 1c22425 0030bc6 3b31903 557fb53 0030bc6 3b31903 0030bc6 81caeb5 c914273 3b31903 557fb53 0030bc6 3b31903 557fb53 3b31903 c914273 3b31903 248f682 c914273 3b31903 557fb53 3b31903 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 3b31903 557fb53 e6fd727 3b31903 e6fd727 557fb53 e6fd727 557fb53 e6fd727 4b8361a 3b31903 557fb53 6193575 99c5692 6193575 99c5692 6193575 99c5692 557fb53 6193575 557fb53 2e21b83 557fb53 4b8361a 3b31903 557fb53 3b31903 6ba247f 4b8361a 3b31903 4b8361a 6ba247f 557fb53 4b8361a 557fb53 3b31903 4b8361a 3b31903 2e21b83 3b31903 4b8361a 3b31903 557fb53 3b31903 4b8361a 3b31903 557fb53 3b31903 4b8361a 6ba247f 81caeb5 e6fd727 557fb53 6ba247f 99c5692 ba35f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import importlib
import json
import os
from typing import Any
import torch
from torch.utils.data import Dataset, DataLoader, random_split, ConcatDataset, Subset
import numpy as np
import pandas as pd
import torchaudio as ta
import pytorch_lightning as pl
from glob import iglob
from preprocessing.preprocess import (
fix_dance_rating_counts,
get_unique_labels,
has_valid_audio,
url_to_filename,
vectorize_label_probs,
vectorize_multi_label,
)
class SongDataset(Dataset):
def __init__(
self,
audio_paths: list[str],
dance_labels: list[np.ndarray],
audio_start_offset=6, # seconds
audio_window_duration=6, # seconds
audio_window_jitter=1.0, # seconds
audio_durations=None,
target_sample_rate=16000,
):
assert (
audio_window_duration > audio_window_jitter
), "Jitter should be a small fraction of the audio window duration."
self.audio_paths = audio_paths
self.dance_labels = dance_labels
# Added to limit file I/O
if audio_durations is None:
audio_metadata = [ta.info(audio) for audio in audio_paths]
self.audio_durations = [
meta.num_frames / meta.sample_rate for meta in audio_metadata
]
self.sample_rate = audio_metadata[
0
].sample_rate # assuming same sample rate
else:
self.audio_durations = audio_durations
self.sample_rate = ta.info(
audio_paths[0]
).sample_rate # assuming same sample rate
self.audio_window_duration = int(audio_window_duration)
self.audio_start_offset = audio_start_offset
self.audio_window_jitter = audio_window_jitter
self.target_sample_rate = target_sample_rate
def __len__(self):
return int(
sum(
max(duration - self.audio_start_offset, 0) // self.audio_window_duration
for duration in self.audio_durations
)
)
def __getitem__(self, idx: int) -> tuple[torch.Tensor, torch.Tensor]:
if isinstance(idx, list):
return [
(self._waveform_from_index(i), self._label_from_index(i)) for i in idx
]
waveform = self._waveform_from_index(idx)
dance_labels = self._label_from_index(idx)
if self._validate_output(waveform, dance_labels):
return waveform, dance_labels
else:
# WARNING: Could cause train/test split leak
return self[idx - 1]
def _idx2audio_idx(self, idx: int) -> int:
return self._get_audio_loc_from_idx(idx)[0]
def _get_audio_loc_from_idx(self, idx: int) -> tuple[int, int]:
"""
Converts dataset index to the indices that reference the target audio path
and window offset.
"""
total_slices = 0
for audio_index, duration in enumerate(self.audio_durations):
audio_slices = max(
(duration - self.audio_start_offset) // self.audio_window_duration, 1
)
if total_slices + audio_slices > idx:
frame_index = idx - total_slices
return audio_index, frame_index
total_slices += audio_slices
def get_label_weights(self):
n_examples, n_classes = self.dance_labels.shape
weights = n_examples / (n_classes * sum(self.dance_labels))
weights[np.isinf(weights)] = 0.0
return torch.from_numpy(weights)
def _backtrace_audio_path(self, index: int) -> str:
return self.audio_paths[self._idx2audio_idx(index)]
def _validate_output(self, x, y):
is_finite = not torch.any(torch.isinf(x))
is_numerical = not torch.any(torch.isnan(x))
has_data = torch.any(x != 0.0)
is_probability = torch.all(y >= -0.0001) and torch.all(y <= 1.0001)
return all((is_finite, is_numerical, has_data, is_probability))
def _waveform_from_index(self, idx: int) -> torch.Tensor:
audio_index, frame_index = self._get_audio_loc_from_idx(idx)
audio_filepath = self.audio_paths[audio_index]
num_windows = self.audio_durations[audio_index] // self.audio_window_duration
jitter_start = -self.audio_window_jitter if frame_index > 0 else 0.0
jitter_end = self.audio_window_jitter if frame_index != num_windows - 1 else 0.0
jitter = int(
torch.FloatTensor(1).uniform_(jitter_start, jitter_end) * self.sample_rate
)
frame_offset = int(
frame_index * self.audio_window_duration * self.sample_rate
+ jitter
+ self.audio_start_offset * self.sample_rate
)
num_frames = self.sample_rate * self.audio_window_duration
waveform, sample_rate = ta.load(
audio_filepath, frame_offset=frame_offset, num_frames=num_frames
)
waveform = ta.functional.resample(
waveform, orig_freq=sample_rate, new_freq=self.target_sample_rate
)
return waveform
def _label_from_index(self, idx: int) -> torch.Tensor:
return torch.from_numpy(self.dance_labels[self._idx2audio_idx(idx)])
class HuggingFaceDatasetWrapper(Dataset):
"""
Makes a standard PyTorch Dataset compatible with a HuggingFace Trainer.
"""
def __init__(self, dataset, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset = dataset
self.pipeline = []
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
x, y = self.dataset[idx]
if len(self.pipeline) > 0:
for fn in self.pipeline:
x = fn(x)
dance_labels = y.argmax()
return {
"input_values": x["input_values"][0] if hasattr(x, "input_values") else x,
"label": dance_labels,
}
def __len__(self):
return len(self.dataset)
def append_to_pipeline(self, fn):
"""
Adds a preprocessing step to the dataset.
"""
self.pipeline.append(fn)
class BestBallroomDataset(Dataset):
def __init__(
self, audio_dir="data/ballroom-songs", class_list=None, **kwargs
) -> None:
super().__init__()
song_paths, encoded_labels, str_labels = self.get_examples(
audio_dir, class_list
)
self.labels = str_labels
with open(os.path.join(audio_dir, "audio_durations.json"), "r") as f:
durations = json.load(f)
durations = {
os.path.join(audio_dir, filepath): duration
for filepath, duration in durations.items()
}
audio_durations = [durations[song] for song in song_paths]
self.song_dataset = SongDataset(
song_paths, encoded_labels, audio_durations=audio_durations, **kwargs
)
def __getitem__(self, index) -> tuple[torch.Tensor, torch.Tensor]:
return self.song_dataset[index]
def __len__(self):
return len(self.song_dataset)
def get_examples(self, audio_dir, class_list=None):
dances = set(
f
for f in os.listdir(audio_dir)
if os.path.isdir(os.path.join(audio_dir, f))
)
common_dances = dances
if class_list is not None:
common_dances = dances & set(class_list)
dances = class_list
dances = np.array(sorted(dances))
song_paths = []
labels = []
for dance in common_dances:
dance_label = (dances == dance).astype("float32")
folder_path = os.path.join(audio_dir, dance)
folder_contents = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
song_paths.extend(os.path.join(folder_path, f) for f in folder_contents)
labels.extend([dance_label] * len(folder_contents))
return np.array(song_paths), np.stack(labels), dances
class Music4DanceDataset(Dataset):
def __init__(
self,
song_data_path,
song_audio_path,
class_list=None,
multi_label=True,
min_votes=1,
**kwargs,
) -> None:
super().__init__()
df = pd.read_csv(song_data_path)
song_paths, labels = get_music4dance_examples(
df,
song_audio_path,
class_list=class_list,
multi_label=multi_label,
min_votes=min_votes,
)
self.song_dataset = SongDataset(
song_paths,
labels,
audio_durations=[30.0] * len(song_paths),
**kwargs,
)
def __getitem__(self, index) -> tuple[torch.Tensor, torch.Tensor]:
return self.song_dataset[index]
def __len__(self):
return len(self.song_dataset)
def get_music4dance_examples(
df: pd.DataFrame, audio_dir: str, class_list=None, multi_label=True, min_votes=1
) -> tuple[np.ndarray, np.ndarray]:
sampled_songs = df[has_valid_audio(df["Sample"], audio_dir)].copy(deep=True)
sampled_songs["DanceRating"] = fix_dance_rating_counts(sampled_songs["DanceRating"])
if class_list is not None:
class_list = set(class_list)
sampled_songs["DanceRating"] = sampled_songs["DanceRating"].apply(
lambda labels: {k: v for k, v in labels.items() if k in class_list}
if not pd.isna(labels)
and any(label in class_list and amt > 0 for label, amt in labels.items())
else np.nan
)
sampled_songs = sampled_songs.dropna(subset=["DanceRating"])
vote_mask = sampled_songs["DanceRating"].apply(
lambda dances: any(votes >= min_votes for votes in dances.values())
)
sampled_songs = sampled_songs[vote_mask]
labels = sampled_songs["DanceRating"].apply(
lambda dances: {
dance: votes for dance, votes in dances.items() if votes >= min_votes
}
)
unique_labels = np.array(get_unique_labels(labels))
vectorizer = vectorize_multi_label if multi_label else vectorize_label_probs
labels = labels.apply(lambda i: vectorizer(i, unique_labels))
audio_paths = [
os.path.join(audio_dir, url_to_filename(url)) for url in sampled_songs["Sample"]
]
return np.array(audio_paths), np.stack(labels)
class PipelinedDataset(Dataset):
"""
Adds a feature extractor preprocessing step to a dataset.
"""
def __init__(self, dataset, feature_extractor):
self._data = dataset
self.feature_extractor = feature_extractor
def __len__(self):
return len(self._data)
def __getitem__(self, index):
sample, label = self._data[index]
features = self.feature_extractor(sample)
return features, label
class DanceDataModule(pl.LightningDataModule):
def __init__(
self,
dataset: Dataset,
test_proportion=0.15,
val_proportion=0.1,
target_classes: list[str] = None,
batch_size: int = 64,
num_workers=10,
data_subset=None,
):
super().__init__()
self.val_proportion = val_proportion
self.test_proportion = test_proportion
self.train_proportion = 1.0 - test_proportion - val_proportion
self.target_classes = target_classes
self.batch_size = batch_size
self.num_workers = num_workers
if data_subset is not None and float(data_subset) != 1.0:
dataset, _ = random_split(dataset, [data_subset, 1 - data_subset])
self.dataset = dataset
def setup(self, stage: str):
self.train_ds, self.val_ds, self.test_ds = random_split(
self.dataset,
[self.train_proportion, self.val_proportion, self.test_proportion],
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def get_label_weights(self):
dataset = (
self.dataset.dataset if isinstance(self.dataset, Subset) else self.dataset
)
total_len = len(dataset)
ds_weights = [len(ds) / total_len for ds in dataset._data.datasets]
weights = sum(
ds.song_dataset.get_label_weights() * w
for ds, w in zip(dataset._data.datasets, ds_weights)
)
return weights
def find_mean_std(dataset: Dataset, zscore=1.96, moe=0.02, p=0.5):
"""
Estimates the mean and standard deviations of the a dataset.
"""
sample_size = int(np.ceil((zscore**2 * p * (1 - p)) / (moe**2)))
sample_indices = np.random.choice(
np.arange(len(dataset)), size=sample_size, replace=False
)
mean = 0
std = 0
for i in sample_indices:
features = dataset[i][0]
mean += features.mean().item()
std += features.std().item()
print("std", std / sample_size)
print("mean", mean / sample_size)
def get_datasets(dataset_config: dict, feature_extractor) -> Dataset:
datasets = []
for dataset_path, kwargs in dataset_config.items():
module_name, class_name = dataset_path.rsplit(".", 1)
module = importlib.import_module(module_name)
ProvidedDataset = getattr(module, class_name)
datasets.append(ProvidedDataset(**kwargs))
return PipelinedDataset(ConcatDataset(datasets), feature_extractor)
def get_class_counts(config: dict):
# TODO: Figure out why music4dance has fractional labels
dataset = get_datasets(config["datasets"], lambda x: x)
counts = sum(
np.sum(
np.arange(len(config["dance_ids"]))
== np.expand_dims(ds.song_dataset.dance_labels.argmax(1), 1),
axis=0,
)
for ds in dataset._data.datasets
)
labels = sorted(config["dance_ids"])
return dict(zip(labels, counts))
def record_audio_durations(folder: str):
"""
Records a filename: duration mapping of all audio files in a folder to a json file.
"""
durations = {}
music_files = iglob(os.path.join(folder, "**", "*.wav"), recursive=True)
for file in music_files:
meta = ta.info(file)
durations[file] = meta.num_frames / meta.sample_rate
with open(os.path.join(folder, "audio_durations.json"), "w") as f:
json.dump(durations, f)
class GTZAN:
pass
|