wlmov / pyramid_dit /modeling_text_encoder.py
multimodalart's picture
Upload 33 files
f0533a5 verified
import torch
import torch.nn as nn
import os
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
)
from typing import Any, Callable, Dict, List, Optional, Union
class SD3TextEncoderWithMask(nn.Module):
def __init__(self, model_path, torch_dtype):
super().__init__()
# CLIP-L
self.tokenizer = CLIPTokenizer.from_pretrained(os.path.join(model_path, 'tokenizer'))
self.tokenizer_max_length = self.tokenizer.model_max_length
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(os.path.join(model_path, 'text_encoder'), torch_dtype=torch_dtype)
# CLIP-G
self.tokenizer_2 = CLIPTokenizer.from_pretrained(os.path.join(model_path, 'tokenizer_2'))
self.text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(os.path.join(model_path, 'text_encoder_2'), torch_dtype=torch_dtype)
# T5
self.tokenizer_3 = T5TokenizerFast.from_pretrained(os.path.join(model_path, 'tokenizer_3'))
self.text_encoder_3 = T5EncoderModel.from_pretrained(os.path.join(model_path, 'text_encoder_3'), torch_dtype=torch_dtype)
self._freeze()
def _freeze(self):
for param in self.parameters():
param.requires_grad = False
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
max_sequence_length: int = 128,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer_3(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
dtype = self.text_encoder_3.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
return prompt_embeds, prompt_attention_mask
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
clip_skip: Optional[int] = None,
clip_model_index: int = 0,
):
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
tokenizer = clip_tokenizers[clip_model_index]
text_encoder = clip_text_encoders[clip_model_index]
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds[0]
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return pooled_prompt_embeds
def encode_prompt(self,
prompt,
num_images_per_prompt=1,
clip_skip: Optional[int] = None,
device=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
pooled_prompt_embed = self._get_clip_prompt_embeds(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=clip_skip,
clip_model_index=0,
)
pooled_prompt_2_embed = self._get_clip_prompt_embeds(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=clip_skip,
clip_model_index=1,
)
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
)
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds
def forward(self, input_prompts, device):
with torch.no_grad():
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.encode_prompt(input_prompts, 1, clip_skip=None, device=device)
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds