Spaces:
Running
Running
File size: 9,834 Bytes
78a1bf0 7e16d4f f4fda1c fcae57e 3ad3f59 fcae57e f4fda1c 7e16d4f 0f0578b 7e16d4f 3ad3f59 7e16d4f f4fda1c a414829 7e16d4f 0f0578b 78a1bf0 f4fda1c 78a1bf0 7e16d4f 78a1bf0 7e16d4f f4fda1c 7e16d4f 3caf047 78a1bf0 7e16d4f 78a1bf0 7e16d4f 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b 7e16d4f 28d8897 78a1bf0 3caf047 28d8897 7e16d4f 78a1bf0 7e16d4f a414829 78a1bf0 7e16d4f a414829 78a1bf0 7e16d4f a414829 7e16d4f 28d8897 78a1bf0 7e16d4f f4fda1c 7e16d4f f4fda1c 78a1bf0 7e16d4f f4fda1c 7e16d4f 78a1bf0 28d8897 0f0578b 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b 78a1bf0 fcae57e f4fda1c fcae57e 78a1bf0 fcae57e f4fda1c fcae57e 78a1bf0 fcae57e 78a1bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import re
from typing import ClassVar, Dict, List, Optional
import weave
from pydantic import BaseModel
from ...regex_model import RegexModel
from ..base import Guardrail
class RegexEntityRecognitionResponse(BaseModel):
contains_entities: bool
detected_entities: Dict[str, list[str]]
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class RegexEntityRecognitionSimpleResponse(BaseModel):
contains_entities: bool
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class RegexEntityRecognitionGuardrail(Guardrail):
"""
A guardrail class for recognizing and optionally anonymizing entities in text using regular expressions.
This class extends the Guardrail base class and utilizes a RegexModel to detect entities in the input text
based on predefined or custom regex patterns. It provides functionality to check for entities, anonymize
detected entities, and return detailed information about the detected entities.
!!! example "Using RegexEntityRecognitionGuardrail"
```python
from guardrails_genie.guardrails.entity_recognition import RegexEntityRecognitionGuardrail
# Initialize with default PII patterns
guardrail = RegexEntityRecognitionGuardrail(should_anonymize=True)
# Or with custom patterns
custom_patterns = {
"employee_id": r"EMP\d{6}",
"project_code": r"PRJ-[A-Z]{2}-\d{4}"
}
guardrail = RegexEntityRecognitionGuardrail(patterns=custom_patterns, should_anonymize=True)
```
Attributes:
regex_model (RegexModel): An instance of RegexModel used for entity recognition.
patterns (Dict[str, str]): A dictionary of regex patterns for entity recognition.
should_anonymize (bool): A flag indicating whether detected entities should be anonymized.
DEFAULT_PATTERNS (ClassVar[Dict[str, str]]): A dictionary of default regex patterns for common entities.
Args:
use_defaults (bool): If True, use default patterns. If False, use custom patterns.
should_anonymize (bool): If True, anonymize detected entities.
show_available_entities (bool): If True, print available entity types.
"""
regex_model: RegexModel
patterns: Dict[str, str] = {}
should_anonymize: bool = False
DEFAULT_PATTERNS: ClassVar[Dict[str, str]] = {
"EMAIL": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b",
"TELEPHONENUM": r"\b(\+\d{1,3}[-.]?)?\(?\d{3}\)?[-.]?\d{3}[-.]?\d{4}\b",
"SOCIALNUM": r"\b\d{3}[-]?\d{2}[-]?\d{4}\b",
"CREDITCARDNUMBER": r"\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b",
"DATEOFBIRTH": r"\b(0[1-9]|1[0-2])[-/](0[1-9]|[12]\d|3[01])[-/](19|20)\d{2}\b",
"DRIVERLICENSENUM": r"[A-Z]\d{7}", # Example pattern, adjust for your needs
"ACCOUNTNUM": r"\b\d{10,12}\b", # Example pattern for bank accounts
"ZIPCODE": r"\b\d{5}(?:-\d{4})?\b",
"GIVENNAME": r"\b[A-Z][a-z]+\b", # Basic pattern for first names
"SURNAME": r"\b[A-Z][a-z]+\b", # Basic pattern for last names
"CITY": r"\b[A-Z][a-z]+(?:[\s-][A-Z][a-z]+)*\b",
"STREET": r"\b\d+\s+[A-Z][a-z]+\s+(?:Street|St|Avenue|Ave|Road|Rd|Boulevard|Blvd|Lane|Ln|Drive|Dr)\b",
"IDCARDNUM": r"[A-Z]\d{7,8}", # Generic pattern for ID cards
"USERNAME": r"@[A-Za-z]\w{3,}", # Basic username pattern
"PASSWORD": r"[A-Za-z0-9@#$%^&+=]{8,}", # Basic password pattern
"TAXNUM": r"\b\d{2}[-]\d{7}\b", # Example tax number pattern
"BUILDINGNUM": r"\b\d+[A-Za-z]?\b", # Basic building number pattern
}
def __init__(
self,
use_defaults: bool = True,
should_anonymize: bool = False,
show_available_entities: bool = False,
**kwargs,
):
patterns = {}
if use_defaults:
patterns = self.DEFAULT_PATTERNS.copy()
if kwargs.get("patterns"):
patterns.update(kwargs["patterns"])
if show_available_entities:
self._print_available_entities(patterns.keys())
# Create the RegexModel instance
regex_model = RegexModel(patterns=patterns)
# Initialize the base class with both the regex_model and patterns
super().__init__(
regex_model=regex_model,
patterns=patterns,
should_anonymize=should_anonymize,
)
def text_to_pattern(self, text: str) -> str:
"""
Convert input text into a regex pattern that matches the exact text.
"""
# Escape special regex characters in the text
escaped_text = re.escape(text)
# Create a pattern that matches the exact text, case-insensitive
return rf"\b{escaped_text}\b"
def _print_available_entities(self, entities: List[str]):
"""Print available entities"""
print("\nAvailable entity types:")
print("=" * 25)
for entity in entities:
print(f"- {entity}")
print("=" * 25 + "\n")
@weave.op()
def guard(
self,
prompt: str,
custom_terms: Optional[list[str]] = None,
return_detected_types: bool = True,
aggregate_redaction: bool = True,
**kwargs,
) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse:
"""
Analyzes the input prompt to detect entities based on predefined or custom regex patterns.
This function checks the provided text (prompt) for entities using regex patterns. It can
utilize either default patterns or custom terms provided by the user. If custom terms are
specified, they are converted into regex patterns, and only these are used for entity detection.
The function returns detailed information about detected entities and can optionally anonymize
the detected entities in the text.
Args:
prompt (str): The input text to be analyzed for entity detection.
custom_terms (Optional[list[str]]): A list of custom terms to be converted into regex patterns.
If provided, only these terms will be checked, ignoring default patterns.
return_detected_types (bool): If True, the function returns detailed information about the
types of entities detected in the text.
aggregate_redaction (bool): Determines the anonymization strategy. If True, all detected
entities are replaced with a generic "[redacted]" label. If False, each entity type is
replaced with its specific label (e.g., "[ENTITY_TYPE]").
Returns:
RegexEntityRecognitionResponse or RegexEntityRecognitionSimpleResponse: An object containing
the results of the entity detection, including whether entities were found, the types and
counts of detected entities, an explanation of the detection process, and optionally, the
anonymized text.
"""
if custom_terms:
# Create a temporary RegexModel with only the custom patterns
temp_patterns = {term: self.text_to_pattern(term) for term in custom_terms}
temp_model = RegexModel(patterns=temp_patterns)
result = temp_model.check(prompt)
else:
# Use the original regex_model if no custom terms provided
result = self.regex_model.check(prompt)
# Create detailed explanation
explanation_parts = []
if result.matched_patterns:
explanation_parts.append("Found the following entities in the text:")
for entity_type, matches in result.matched_patterns.items():
explanation_parts.append(f"- {entity_type}: {len(matches)} instance(s)")
else:
explanation_parts.append("No entities detected in the text.")
if result.failed_patterns:
explanation_parts.append("\nChecked but did not find these entity types:")
for pattern in result.failed_patterns:
explanation_parts.append(f"- {pattern}")
# Updated anonymization logic
anonymized_text = None
if getattr(self, "should_anonymize", False) and result.matched_patterns:
anonymized_text = prompt
for entity_type, matches in result.matched_patterns.items():
for match in matches:
replacement = (
"[redacted]"
if aggregate_redaction
else f"[{entity_type.upper()}]"
)
anonymized_text = anonymized_text.replace(match, replacement)
if return_detected_types:
return RegexEntityRecognitionResponse(
contains_entities=not result.passed,
detected_entities=result.matched_patterns,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
else:
return RegexEntityRecognitionSimpleResponse(
contains_entities=not result.passed,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
@weave.op()
def predict(
self,
prompt: str,
return_detected_types: bool = True,
aggregate_redaction: bool = True,
**kwargs,
) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse:
return self.guard(
prompt,
return_detected_types=return_detected_types,
aggregate_redaction=aggregate_redaction,
**kwargs,
)
|