File size: 7,468 Bytes
9269c10
 
b850722
 
 
9269c10
b850722
 
 
c89e6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfcefce
 
2946856
 
9269c10
 
 
 
 
 
 
 
 
 
 
 
 
c32f628
c89e6e0
 
 
 
 
 
 
 
c32f628
c89e6e0
 
 
 
 
 
 
3ad3f59
 
 
 
 
3caf047
3ad3f59
 
 
 
 
 
3caf047
3ad3f59
 
 
 
 
 
3caf047
3ad3f59
28d8897
 
 
 
 
3caf047
28d8897
cfcefce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021c1f9
 
 
 
 
 
 
9269c10
 
 
2946856
9269c10
0cca41e
 
 
6d0856c
0cca41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946856
0cca41e
 
 
 
 
 
 
af688eb
0cca41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import importlib

import streamlit as st
from dotenv import load_dotenv

from guardrails_genie.guardrails import GuardrailManager
from guardrails_genie.llm import OpenAIModel


def initialize_session_state():
    load_dotenv()
    if "guardrails" not in st.session_state:
        st.session_state.guardrails = []
    if "guardrail_names" not in st.session_state:
        st.session_state.guardrail_names = []
    if "guardrails_manager" not in st.session_state:
        st.session_state.guardrails_manager = None
    if "initialize_guardrails" not in st.session_state:
        st.session_state.initialize_guardrails = False
    if "system_prompt" not in st.session_state:
        st.session_state.system_prompt = ""
    if "user_prompt" not in st.session_state:
        st.session_state.user_prompt = ""
    if "test_guardrails" not in st.session_state:
        st.session_state.test_guardrails = False
    if "llm_model" not in st.session_state:
        st.session_state.llm_model = None
    if "llama_guard_checkpoint_name" not in st.session_state:
        st.session_state.llama_guard_checkpoint_name = ""


def initialize_guardrails():
    st.session_state.guardrails = []
    for guardrail_name in st.session_state.guardrail_names:
        if guardrail_name == "PromptInjectionSurveyGuardrail":
            survey_guardrail_model = st.sidebar.selectbox(
                "Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"]
            )
            if survey_guardrail_model:
                st.session_state.guardrails.append(
                    getattr(
                        importlib.import_module("guardrails_genie.guardrails"),
                        guardrail_name,
                    )(llm_model=OpenAIModel(model_name=survey_guardrail_model))
                )
        elif guardrail_name == "PromptInjectionClassifierGuardrail":
            classifier_model_name = st.sidebar.selectbox(
                "Classifier Guardrail Model",
                [
                    "",
                    "ProtectAI/deberta-v3-base-prompt-injection-v2",
                    "wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3",
                ],
            )
            if classifier_model_name != "":
                st.session_state.guardrails.append(
                    getattr(
                        importlib.import_module("guardrails_genie.guardrails"),
                        guardrail_name,
                    )(model_name=classifier_model_name)
                )
        elif guardrail_name == "PresidioEntityRecognitionGuardrail":
            st.session_state.guardrails.append(
                getattr(
                    importlib.import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "RegexEntityRecognitionGuardrail":
            st.session_state.guardrails.append(
                getattr(
                    importlib.import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "TransformersEntityRecognitionGuardrail":
            st.session_state.guardrails.append(
                getattr(
                    importlib.import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "RestrictedTermsJudge":
            st.session_state.guardrails.append(
                getattr(
                    importlib.import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "PromptInjectionLlamaGuardrail":
            llama_guard_checkpoint_name = st.sidebar.text_input(
                "Checkpoint Name", value=""
            )
            st.session_state.llama_guard_checkpoint_name = llama_guard_checkpoint_name
            st.session_state.guardrails.append(
                getattr(
                    importlib.import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(
                    checkpoint=(
                        None
                        if st.session_state.llama_guard_checkpoint_name == ""
                        else st.session_state.llama_guard_checkpoint_name
                    )
                )
            )
        else:
            st.session_state.guardrails.append(
                getattr(
                    importlib.import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )()
            )
    st.session_state.guardrails_manager = GuardrailManager(
        guardrails=st.session_state.guardrails
    )


if st.session_state.is_authenticated:
    initialize_session_state()
    st.title(":material/robot: Guardrails Genie Playground")

    openai_model = st.sidebar.selectbox(
        "OpenAI LLM for Chat", ["", "gpt-4o-mini", "gpt-4o"]
    )
    chat_condition = openai_model != ""

    guardrails = []

    guardrail_names = st.sidebar.multiselect(
        label="Select Guardrails",
        options=[
            cls_name
            for cls_name, cls_obj in vars(
                importlib.import_module("guardrails_genie.guardrails")
            ).items()
            if isinstance(cls_obj, type) and cls_name != "GuardrailManager"
        ],
    )
    st.session_state.guardrail_names = guardrail_names

    if st.sidebar.button("Initialize Guardrails") and chat_condition:
        st.session_state.initialize_guardrails = True

    if st.session_state.initialize_guardrails:
        with st.sidebar.status("Initializing Guardrails..."):
            initialize_guardrails()
            st.session_state.llm_model = OpenAIModel(model_name=openai_model)

        user_prompt = st.text_area("User Prompt", value="")
        st.session_state.user_prompt = user_prompt

        test_guardrails_button = st.button("Test Guardrails")
        st.session_state.test_guardrails = test_guardrails_button

        if st.session_state.test_guardrails:
            with st.sidebar.status("Running Guardrails..."):
                guardrails_response, call = (
                    st.session_state.guardrails_manager.guard.call(
                        st.session_state.guardrails_manager,
                        prompt=st.session_state.user_prompt,
                    )
                )

            if guardrails_response["safe"]:
                st.markdown(
                    f"\n\n---\nPrompt is safe! Explore guardrail trace on [Weave]({call.ui_url})\n\n---\n"
                )

                with st.sidebar.status("Generating response from LLM..."):
                    response, call = st.session_state.llm_model.predict.call(
                        st.session_state.llm_model,
                        user_prompts=st.session_state.user_prompt,
                    )
                st.markdown(
                    response.choices[0].message.content
                    + f"\n\n---\nExplore LLM generation trace on [Weave]({call.ui_url})"
                )
            else:
                st.warning("Prompt is not safe!")
                st.markdown(guardrails_response["summary"])
                st.markdown(f"Explore prompt trace on [Weave]({call.ui_url})")
else:
    st.warning("Please authenticate your WandB account to use this feature.")