File size: 9,797 Bytes
c0fd1af
3146d66
 
98a3259
a645df8
98a3259
 
 
2b2ab5b
3146d66
c0fd1af
a645df8
98a3259
3146d66
785c044
3146d66
 
 
ec05364
2b2ab5b
 
ec05364
 
 
 
3146d66
 
41151eb
 
 
 
 
 
c0fd1af
 
41151eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146d66
 
0cca41e
 
 
785c044
0cca41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fd1af
0cca41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fd1af
0cca41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import asyncio
from importlib import import_module

import pandas as pd
import streamlit as st
import weave
from dotenv import load_dotenv

from guardrails_genie.guardrails import GuardrailManager
from guardrails_genie.llm import OpenAIModel
from guardrails_genie.metrics import AccuracyMetric


def initialize_session_state():
    load_dotenv()
    if "uploaded_file" not in st.session_state:
        st.session_state.uploaded_file = None
    if "dataset_name" not in st.session_state:
        st.session_state.dataset_name = None
    if "preview_in_app" not in st.session_state:
        st.session_state.preview_in_app = False
    if "is_dataset_published" not in st.session_state:
        st.session_state.is_dataset_published = False
    if "publish_dataset_button" not in st.session_state:
        st.session_state.publish_dataset_button = False
    if "dataset_ref" not in st.session_state:
        st.session_state.dataset_ref = None
    if "guardrails" not in st.session_state:
        st.session_state.guardrails = []
    if "guardrail_names" not in st.session_state:
        st.session_state.guardrail_names = []
    if "start_evaluations_button" not in st.session_state:
        st.session_state.start_evaluations_button = False
    if "evaluation_name" not in st.session_state:
        st.session_state.evaluation_name = ""


def initialize_guardrails():
    st.session_state.guardrails = []
    for guardrail_name in st.session_state.guardrail_names:
        if guardrail_name == "PromptInjectionSurveyGuardrail":
            survey_guardrail_model = st.sidebar.selectbox(
                "Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"]
            )
            if survey_guardrail_model:
                st.session_state.guardrails.append(
                    getattr(
                        import_module("guardrails_genie.guardrails"),
                        guardrail_name,
                    )(llm_model=OpenAIModel(model_name=survey_guardrail_model))
                )
        elif guardrail_name == "PromptInjectionClassifierGuardrail":
            classifier_model_name = st.sidebar.selectbox(
                "Classifier Guardrail Model",
                [
                    "",
                    "ProtectAI/deberta-v3-base-prompt-injection-v2",
                    "wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3",
                ],
            )
            if classifier_model_name != "":
                st.session_state.guardrails.append(
                    getattr(
                        import_module("guardrails_genie.guardrails"),
                        guardrail_name,
                    )(model_name=classifier_model_name)
                )
        elif guardrail_name == "PresidioEntityRecognitionGuardrail":
            st.session_state.guardrails.append(
                getattr(
                    import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "RegexEntityRecognitionGuardrail":
            st.session_state.guardrails.append(
                getattr(
                    import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "TransformersEntityRecognitionGuardrail":
            st.session_state.guardrails.append(
                getattr(
                    import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "RestrictedTermsJudge":
            st.session_state.guardrails.append(
                getattr(
                    import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(should_anonymize=True)
            )
        elif guardrail_name == "PromptInjectionLlamaGuardrail":
            llama_guard_checkpoint_name = st.sidebar.text_input(
                "Checkpoint Name", value=""
            )
            st.session_state.llama_guard_checkpoint_name = llama_guard_checkpoint_name
            st.session_state.guardrails.append(
                getattr(
                    import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )(
                    checkpoint=(
                        None
                        if st.session_state.llama_guard_checkpoint_name == ""
                        else st.session_state.llama_guard_checkpoint_name
                    )
                )
            )
        else:
            st.session_state.guardrails.append(
                getattr(
                    import_module("guardrails_genie.guardrails"),
                    guardrail_name,
                )()
            )
    st.session_state.guardrails_manager = GuardrailManager(
        guardrails=st.session_state.guardrails
    )


if st.session_state.is_authenticated:
    initialize_session_state()
    st.title(":material/monitoring: Evaluation")

    uploaded_file = st.sidebar.file_uploader(
        "Upload the evaluation dataset as a CSV file", type="csv"
    )
    st.session_state.uploaded_file = uploaded_file

    if st.session_state.uploaded_file is not None:
        dataset_name = st.sidebar.text_input("Evaluation dataset name", value=None)
        st.session_state.dataset_name = dataset_name
        preview_in_app = st.sidebar.toggle("Preview in app", value=False)
        st.session_state.preview_in_app = preview_in_app
        publish_dataset_button = st.sidebar.button("Publish dataset")
        st.session_state.publish_dataset_button = publish_dataset_button

        if st.session_state.publish_dataset_button and (
            st.session_state.dataset_name is not None
            and st.session_state.dataset_name != ""
        ):

            with st.expander("Evaluation Dataset Preview", expanded=True):
                dataframe = pd.read_csv(st.session_state.uploaded_file)
                data_list = dataframe.to_dict(orient="records")

                dataset = weave.Dataset(
                    name=st.session_state.dataset_name, rows=data_list
                )
                st.session_state.dataset_ref = weave.publish(dataset)

                entity = st.session_state.dataset_ref.entity
                project = st.session_state.dataset_ref.project
                dataset_name = st.session_state.dataset_name
                digest = st.session_state.dataset_ref._digest
                dataset_url = f"https://wandb.ai/{entity}/{project}/weave/objects/{dataset_name}/versions/{digest}"
                st.markdown(f"Dataset published to [**Weave**]({dataset_url})")

                if preview_in_app:
                    st.dataframe(dataframe.head(20))
                    if len(dataframe) > 20:
                        st.markdown(
                            f"⚠️ Dataset is too large to preview in app, please explore in the [**Weave UI**]({dataset_url})"
                        )

            st.session_state.is_dataset_published = True

        if st.session_state.is_dataset_published:
            guardrail_names = st.sidebar.multiselect(
                "Select Guardrails",
                options=[
                    cls_name
                    for cls_name, cls_obj in vars(
                        import_module("guardrails_genie.guardrails")
                    ).items()
                    if isinstance(cls_obj, type) and cls_name != "GuardrailManager"
                ],
            )
            st.session_state.guardrail_names = guardrail_names

            initialize_guardrails()
            evaluation_name = st.sidebar.text_input("Evaluation Name", value="")
            st.session_state.evaluation_name = evaluation_name

            start_evaluations_button = st.sidebar.button("Start Evaluations")
            st.session_state.start_evaluations_button = start_evaluations_button
            if st.session_state.start_evaluations_button:
                # st.write(len(st.session_state.guardrails))
                evaluation = weave.Evaluation(
                    dataset=st.session_state.dataset_ref,
                    scorers=[AccuracyMetric()],
                    streamlit_mode=True,
                )
                with st.expander("Evaluation Results", expanded=True):
                    evaluation_summary, call = asyncio.run(
                        evaluation.evaluate.call(
                            evaluation,
                            GuardrailManager(guardrails=st.session_state.guardrails),
                            __weave={
                                "display_name": (
                                    "Evaluation.evaluate"
                                    if st.session_state.evaluation_name == ""
                                    else "Evaluation.evaluate:"
                                    + st.session_state.evaluation_name
                                )
                            },
                        )
                    )
                    x_axis = list(evaluation_summary["AccuracyMetric"].keys())
                    y_axis = [
                        evaluation_summary["AccuracyMetric"][x_axis_item]
                        for x_axis_item in x_axis
                    ]
                    st.bar_chart(
                        pd.DataFrame({"Metric": x_axis, "Score": y_axis}),
                        x="Metric",
                        y="Score",
                    )
                    st.markdown(
                        f"Explore the entire evaluation trace table in [Weave]({call.ui_url})"
                    )
else:
    st.warning("Please authenticate your WandB account to use this feature.")