File size: 15,616 Bytes
993988f
 
f4dbf56
993988f
f4dbf56
993988f
f4dbf56
993988f
 
f4dbf56
993988f
 
 
f4dbf56
 
 
 
 
 
 
 
 
993988f
 
 
553ced5
f4dbf56
553ced5
 
993988f
 
 
 
 
 
f4dbf56
553ced5
f4dbf56
553ced5
 
f4dbf56
 
 
 
 
 
553ced5
 
f4dbf56
 
 
 
 
 
 
 
 
 
 
 
993988f
 
 
553ced5
 
 
 
 
 
 
f4dbf56
553ced5
 
993988f
 
 
f4dbf56
993988f
 
 
553ced5
 
 
 
 
 
 
993988f
 
 
553ced5
 
 
 
 
 
 
f4dbf56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993988f
 
 
553ced5
f4dbf56
553ced5
 
f4dbf56
 
 
553ced5
 
993988f
f4dbf56
 
 
 
 
 
 
 
 
993988f
 
 
 
 
 
553ced5
f4dbf56
553ced5
 
f4dbf56
553ced5
 
993988f
 
 
 
f4dbf56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993988f
 
 
553ced5
993988f
 
 
f4dbf56
993988f
 
f4dbf56
 
 
993988f
 
f4dbf56
993988f
f4dbf56
993988f
 
f4dbf56
993988f
f4dbf56
993988f
 
 
 
553ced5
993988f
f4dbf56
 
993988f
f4dbf56
 
993988f
 
 
f4dbf56
993988f
f4dbf56
 
993988f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import hashlib
import json
import os
import pathlib
import tempfile
from enum import Enum
from typing import Optional, Any

import weave
from pydantic import BaseModel, PrivateAttr

from guardrails_genie.guardrails.base import Guardrail

try:
    from detect_secrets import SecretsCollection
    from detect_secrets.settings import default_settings
    import hyperscan
except ImportError:
    raise ImportError(
        "The `detect-secrets` and the `hyperscan` packages are required for using the SecretsGuardrail. "
        "Please install then by running `pip install detect-secrets hyperscan`."
    )


class REDACTION(str, Enum):
    """
    Enum for different types of redaction modes.
    """

    REDACT_PARTIAL = "REDACT_PARTIAL"
    REDACT_ALL = "REDACT_ALL"
    REDACT_HASH = "REDACT_HASH"
    REDACT_NONE = "REDACT_NONE"


def redact_value(value: str, mode: str) -> str:
    """
    Redacts the given value based on the specified redaction mode.

    Args:
        value (str): The string value to be redacted.
        mode (str): The redaction mode to be applied. It can be one of the following:
            - REDACTION.REDACT_PARTIAL: Partially redacts the value.
            - REDACTION.REDACT_ALL: Fully redacts the value.
            - REDACTION.REDACT_HASH: Redacts the value by hashing it.
            - REDACTION.REDACT_NONE: No redaction is applied.

    Returns:
        str: The redacted value based on the specified mode.
    """
    replacement = value
    if mode == REDACTION.REDACT_PARTIAL:
        replacement = "[REDACTED:]" + value[:2] + ".." + value[-2:] + "[:REDACTED]"
    elif mode == REDACTION.REDACT_ALL:
        replacement = "[REDACTED:]" + ("*" * len(value)) + "[:REDACTED]"
    elif mode == REDACTION.REDACT_HASH:
        replacement = (
            "[REDACTED:]" + hashlib.md5(value.encode()).hexdigest() + "[:REDACTED]"
        )
    return replacement


class SecretsDetectionSimpleResponse(BaseModel):
    """
    A simple response model for secrets detection.

    Attributes:
        contains_secrets (bool): Indicates if secrets were detected.
        explanation (str): Explanation of the detection result.
        redacted_text (Optional[str]): The redacted text if secrets were found.
        risk_score (float): The risk score of the detection result. (0.0, 0.5, 1.0)
    """

    contains_secrets: bool
    explanation: str
    redacted_text: Optional[str] = None
    risk_score: float = 0.0

    @property
    def safe(self) -> bool:
        """
        Property to check if the text is safe (no secrets detected).

        Returns:
            bool: True if no secrets were detected, False otherwise.
        """
        return not self.contains_secrets


class SecretsDetectionResponse(SecretsDetectionSimpleResponse):
    """
    A detailed response model for secrets detection.

    Attributes:
        detected_secrets (dict[str, list[str]]): Dictionary of detected secrets.
    """

    detected_secrets: dict[str, Any] | None = None


class SecretsInfo(BaseModel):
    """
    Model representing information about a detected secret.

    Attributes:
        secret (str): The detected secret value.
        line_number (int): The line number where the secret was found.
    """

    secret: str
    line_number: int


class ScanResult(BaseModel):
    """
    Model representing the result of a secrets scan.

    Attributes:
        detected_secrets (dict[str, Any] | None): Dictionary of detected secrets, or None if no secrets were found.
        modified_prompt (str): The modified prompt with secrets redacted.
        has_secret (bool): Indicates if any secrets were detected.
        risk_score (float): The risk score of the detection result.
    """

    detected_secrets: dict[str, Any] | None = None
    modified_prompt: str
    has_secret: bool
    risk_score: float


class DetectSecretsModel(weave.Model):
    """
    Model for detecting secrets using the detect-secrets library.
    """

    @staticmethod
    def scan(text: str) -> dict[str, list[SecretsInfo]]:
        """
        Scans the given text for secrets using the detect-secrets library.

        Args:
            text (str): The text to scan for secrets.

        Returns:
            dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
        """
        secrets = SecretsCollection()
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        temp_file.write(text.encode("utf-8"))
        temp_file.close()

        with default_settings():
            secrets.scan_file(str(temp_file.name))

        unique_secrets = {}
        for file in secrets.files:
            for found_secret in secrets[file]:
                if found_secret.secret_value is None:
                    continue

                secret_type = found_secret.type
                actual_secret = found_secret.secret_value
                line_number = found_secret.line_number

                if secret_type not in unique_secrets:
                    unique_secrets[secret_type] = []

                unique_secrets[secret_type].append(
                    SecretsInfo(secret=actual_secret, line_number=line_number)
                )

        os.remove(temp_file.name)
        return unique_secrets

    @weave.op
    def invoke(self, text: str) -> dict[str, list[SecretsInfo]]:
        """
        Invokes the scan method to detect secrets in the given text.

        Args:
            text (str): The text to scan for secrets.

        Returns:
            dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
        """
        return self.scan(text)


class HyperScanModel(weave.Model):
    """
    Model for detecting secrets using the Hyperscan library.
    We use the Hyperscan library to scan for secrets using regex patterns.
    The patterns are mined from https://github.com/mazen160/secrets-patterns-db
    This model is used in conjunction with the DetectSecretsModel to improve the detection of secrets.
    """

    _db: Any = PrivateAttr()
    _pattern_map: dict[str, str] = PrivateAttr()
    only_high_confidence: bool = False
    ids: list[str] = []

    def _load_patterns(self) -> dict[str, str]:
        """
        Loads the patterns from a JSONL file.

        Returns:
            dict[str, str]: A dictionary where the keys are pattern names and the values are regex patterns.
        """
        patterns = (
            pathlib.Path(__file__).parent.resolve() / "secrets_patterns.jsonl"
        ).open()
        patterns_list = [json.loads(line) for line in patterns]
        if self.only_high_confidence:
            patterns_list = [
                pattern for pattern in patterns_list if pattern["confidence"] == "high"
            ]
        return {pattern["name"]: pattern["regex"] for pattern in patterns_list}

    def __init__(self, **kwargs: Any):
        """
        Initializes the HyperScanModel instance.
        """
        super().__init__(**kwargs)

    def model_post_init(self, __context: Any) -> None:
        """
        Post-initialization method to load patterns and compile the Hyperscan database.
        """
        self._pattern_map = self._load_patterns()
        self.ids = list(self._pattern_map.keys())
        expressions = [pattern.encode() for pattern in self._pattern_map.values()]
        self._db = hyperscan.Database()
        self._db.compile(expressions=expressions, ids=list(range(len(expressions))))

    def scan(self, text: str) -> dict[str, list[SecretsInfo]]:
        """
        Scans the given text for secrets using the Hyperscan library.

        Args:
            text (str): The text to scan for secrets.

        Returns:
            dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
        """
        unique_secrets = {}

        def on_match(idx, start, end, flags, context):
            """
            Callback function for handling matches found by Hyperscan.

            Args:
                idx: The index of the matched pattern.
                start: The start position of the match.
                end: The end position of the match.
                flags: The flags associated with the match.
                context: The context provided to the scan method.
            """
            secret = context["text"][start:end]
            line_number = context["line_number"]
            current_match = unique_secrets.setdefault(self.ids[idx], [])

            if not current_match or len(secret) > len(current_match[0].secret):
                unique_secrets[self.ids[idx]] = [
                    SecretsInfo(line_number=line_number, secret=secret)
                ]

        for line_no, line in enumerate(text.splitlines(), start=1):
            self._db.scan(
                line.encode(),
                match_event_handler=on_match,
                context={"text": line, "line_number": line_no},
            )

        return unique_secrets

    @weave.op
    def invoke(self, text: str) -> dict[str, list[SecretsInfo]]:
        """
        Invokes the scan method to detect secrets in the given text.

        Args:
            text (str): The text to scan for secrets.

        Returns:
            dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
        """
        return self.scan(text)


class SecretsDetectionGuardrail(Guardrail):
    """
    Guardrail class for secrets detection using both detect-secrets and Hyperscan models.

    Attributes:
        redaction (REDACTION): The redaction mode to be applied.
        _detect_secrets_model (Any): Instance of the DetectSecretsModel.
        _hyperscan_model (Any): Instance of the HyperScanModel.
    """

    redaction: REDACTION
    _detect_secrets_model: Any = PrivateAttr()
    _hyperscan_model: Any = PrivateAttr()

    def model_post_init(self, __context: Any) -> None:
        """
        Post-initialization method to initialize the detect-secrets and Hyperscan models.
        """
        self._detect_secrets_model = DetectSecretsModel()
        self._hyperscan_model = HyperScanModel()

    def __init__(
        self,
        redaction: REDACTION = REDACTION.REDACT_ALL,
        **kwargs,
    ):
        """
        Initializes the SecretsDetectionGuardrail instance.

        Args:
            redaction (REDACTION): The redaction mode to be applied. Defaults to REDACTION.REDACT_ALL.
            **kwargs: Additional keyword arguments.
        """
        super().__init__(
            redaction=redaction,
        )

    def get_modified_value(
        self, unique_secrets: dict[str, Any], lines: list[str]
    ) -> str:
        """
        Redacts the detected secrets in the given lines of text.

        Args:
            unique_secrets (dict[str, Any]): Dictionary of detected secrets.
            lines (list[str]): List of lines of text.

        Returns:
            str: The modified text with secrets redacted.
        """
        for _, secrets_list in unique_secrets.items():
            for secret_info in secrets_list:
                secret = secret_info.secret
                line_number = secret_info.line_number
                lines[line_number - 1] = lines[line_number - 1].replace(
                    secret, redact_value(secret, self.redaction)
                )

        modified_value = "\n".join(lines)
        return modified_value

    def get_scan_result(
        self, unique_secrets: dict[str, list[SecretsInfo]], lines: list[str]
    ) -> ScanResult | None:
        """
        Generates a ScanResult based on the detected secrets.

        Args:
            unique_secrets (dict[str, list[SecretsInfo]]): Dictionary of detected secrets.
            lines (list[str]): List of lines of text.

        Returns:
            ScanResult | None: The scan result if secrets are detected, otherwise None.
        """
        if unique_secrets:
            modified_value = self.get_modified_value(unique_secrets, lines)
            detected_secrets = {
                k: [i.secret for i in v] for k, v in unique_secrets.items()
            }

            return ScanResult(
                **{
                    "detected_secrets": detected_secrets,
                    "modified_prompt": modified_value,
                    "has_secret": True,
                    "risk_score": 1.0,
                }
            )
        return None

    def scan(self, prompt: str) -> ScanResult:
        """
        Scans the given prompt for secrets using both detect-secrets and Hyperscan models.

        Args:
            prompt (str): The text to scan for secrets.

        Returns:
            ScanResult: The scan result with detected secrets and redacted text.
        """
        if prompt.strip() == "":
            return ScanResult(
                **{
                    "detected_secrets": None,
                    "modified_prompt": prompt,
                    "has_secret": False,
                    "risk_score": 0.0,
                }
            )

        unique_secrets = self._detect_secrets_model.invoke(text=prompt)
        results = self.get_scan_result(unique_secrets, prompt.splitlines())
        if results:
            return results

        unique_secrets = self._hyperscan_model.invoke(text=prompt)
        results = self.get_scan_result(unique_secrets, prompt.splitlines())
        if results:
            results.risk_score = 0.5
            return results

        return ScanResult(
            **{
                "detected_secrets": None,
                "modified_prompt": prompt,
                "has_secret": False,
                "risk_score": 0.0,
            }
        )

    @weave.op
    def guard(
        self,
        prompt: str,
        return_detected_secrets: bool = True,
        **kwargs,
    ) -> SecretsDetectionResponse | SecretsDetectionResponse:
        """
        Guards the given prompt by scanning for secrets and optionally returning detected secrets.

        Args:
            prompt (str): The text to scan for secrets.
            return_detected_secrets (bool): Whether to return detected secrets in the response. Defaults to True.
            **kwargs: Additional keyword arguments.

        Returns:
            SecretsDetectionResponse | SecretsDetectionSimpleResponse: The response with scan results and redacted text.
        """
        results = self.scan(prompt)

        explanation_parts = []
        if results.has_secret:
            explanation_parts.append("Found the following secrets in the text:")
            for secret_type, matches in results.detected_secrets.items():
                explanation_parts.append(f"- {secret_type}: {len(matches)} instance(s)")
        else:
            explanation_parts.append("No secrets detected in the text.")

        if return_detected_secrets:
            return SecretsDetectionResponse(
                contains_secrets=results.has_secret,
                detected_secrets=results.detected_secrets,
                explanation="\n".join(explanation_parts),
                redacted_text=results.modified_prompt,
                risk_score=results.risk_score,
            )
        else:
            return SecretsDetectionSimpleResponse(
                contains_secrets=not results.has_secret,
                explanation="\n".join(explanation_parts),
                redacted_text=results.modified_prompt,
                risk_score=results.risk_score,
            )