Spaces:
Running
Running
import streamlit as st | |
import weave | |
from dotenv import load_dotenv | |
from guardrails_genie.guardrails import GuardrailManager, PromptInjectionSurveyGuardrail | |
from guardrails_genie.llm import OpenAIModel | |
load_dotenv() | |
weave.init(project_name="guardrails-genie") | |
openai_model = st.sidebar.selectbox("OpenAI LLM", ["", "gpt-4o-mini", "gpt-4o"]) | |
chat_condition = openai_model != "" | |
guardrails = [] | |
with st.sidebar.expander("Switch on Prompt Injection Guardrails"): | |
is_survey_guardrail_enabled = st.toggle("Survey Guardrail") | |
if is_survey_guardrail_enabled: | |
survey_guardrail_model = st.selectbox( | |
"Survey Guardrail Model", ["", "gpt-4o-mini", "gpt-4o"] | |
) | |
if survey_guardrail_model: | |
guardrails.append( | |
PromptInjectionSurveyGuardrail( | |
llm_model=OpenAIModel(model_name=survey_guardrail_model) | |
) | |
) | |
guardrails_manager = GuardrailManager(guardrails=guardrails) | |
# Use session state to track if the chat has started | |
if "chat_started" not in st.session_state: | |
st.session_state.chat_started = False | |
# Start chat when button is pressed | |
if st.sidebar.button("Start Chat") and chat_condition: | |
st.session_state.chat_started = True | |
# Display chat UI if chat has started | |
if st.session_state.chat_started: | |
st.title("Guardrails Genie") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
llm_model = OpenAIModel(model_name=openai_model) | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# React to user input | |
if prompt := st.chat_input("What is up?"): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
guardrails_response, call = guardrails_manager.guard.call( | |
guardrails_manager, prompt=prompt | |
) | |
if guardrails_response["safe"]: | |
response, call = llm_model.predict.call( | |
llm_model, user_prompts=prompt, messages=st.session_state.messages | |
) | |
response = response.choices[0].message.content | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response + f"\n\n---\n[Explore in Weave]({call.ui_url})") | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
else: | |
st.error("Guardrails detected an issue with the prompt.") | |
for alert in guardrails_response["alerts"]: | |
st.error(f"{alert['guardrail_name']}: {alert['response']}") | |
st.error(f"For details, explore in Weave at {call.ui_url}") | |