Spaces:
Running
Running
import asyncio | |
from importlib import import_module | |
import pandas as pd | |
import streamlit as st | |
import weave | |
from dotenv import load_dotenv | |
from guardrails_genie.guardrails import GuardrailManager | |
from guardrails_genie.llm import OpenAIModel | |
from guardrails_genie.metrics import AccuracyMetric | |
def initialize_session_state(): | |
load_dotenv() | |
if "uploaded_file" not in st.session_state: | |
st.session_state.uploaded_file = None | |
if "dataset_name" not in st.session_state: | |
st.session_state.dataset_name = None | |
if "preview_in_app" not in st.session_state: | |
st.session_state.preview_in_app = False | |
if "is_dataset_published" not in st.session_state: | |
st.session_state.is_dataset_published = False | |
if "publish_dataset_button" not in st.session_state: | |
st.session_state.publish_dataset_button = False | |
if "dataset_ref" not in st.session_state: | |
st.session_state.dataset_ref = None | |
if "guardrails" not in st.session_state: | |
st.session_state.guardrails = [] | |
if "guardrail_names" not in st.session_state: | |
st.session_state.guardrail_names = [] | |
if "start_evaluations_button" not in st.session_state: | |
st.session_state.start_evaluations_button = False | |
if "evaluation_name" not in st.session_state: | |
st.session_state.evaluation_name = "" | |
def initialize_guardrails(): | |
st.session_state.guardrails = [] | |
for guardrail_name in st.session_state.guardrail_names: | |
if guardrail_name == "PromptInjectionSurveyGuardrail": | |
survey_guardrail_model = st.sidebar.selectbox( | |
"Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"] | |
) | |
if survey_guardrail_model: | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(llm_model=OpenAIModel(model_name=survey_guardrail_model)) | |
) | |
elif guardrail_name == "PromptInjectionClassifierGuardrail": | |
classifier_model_name = st.sidebar.selectbox( | |
"Classifier Guardrail Model", | |
[ | |
"", | |
"ProtectAI/deberta-v3-base-prompt-injection-v2", | |
"wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3", | |
], | |
) | |
if classifier_model_name != "": | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(model_name=classifier_model_name) | |
) | |
elif guardrail_name == "PresidioEntityRecognitionGuardrail": | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "RegexEntityRecognitionGuardrail": | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "TransformersEntityRecognitionGuardrail": | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "RestrictedTermsJudge": | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "PromptInjectionLlamaGuardrail": | |
llama_guard_checkpoint_name = st.sidebar.text_input( | |
"Checkpoint Name", value="" | |
) | |
st.session_state.llama_guard_checkpoint_name = llama_guard_checkpoint_name | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)( | |
checkpoint=( | |
None | |
if st.session_state.llama_guard_checkpoint_name == "" | |
else st.session_state.llama_guard_checkpoint_name | |
) | |
) | |
) | |
else: | |
st.session_state.guardrails.append( | |
getattr( | |
import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)() | |
) | |
st.session_state.guardrails_manager = GuardrailManager( | |
guardrails=st.session_state.guardrails | |
) | |
if st.session_state.is_authenticated: | |
initialize_session_state() | |
st.title(":material/monitoring: Evaluation") | |
uploaded_file = st.sidebar.file_uploader( | |
"Upload the evaluation dataset as a CSV file", type="csv" | |
) | |
st.session_state.uploaded_file = uploaded_file | |
if st.session_state.uploaded_file is not None: | |
dataset_name = st.sidebar.text_input("Evaluation dataset name", value=None) | |
st.session_state.dataset_name = dataset_name | |
preview_in_app = st.sidebar.toggle("Preview in app", value=False) | |
st.session_state.preview_in_app = preview_in_app | |
publish_dataset_button = st.sidebar.button("Publish dataset") | |
st.session_state.publish_dataset_button = publish_dataset_button | |
if st.session_state.publish_dataset_button and ( | |
st.session_state.dataset_name is not None | |
and st.session_state.dataset_name != "" | |
): | |
with st.expander("Evaluation Dataset Preview", expanded=True): | |
dataframe = pd.read_csv(st.session_state.uploaded_file) | |
data_list = dataframe.to_dict(orient="records") | |
dataset = weave.Dataset( | |
name=st.session_state.dataset_name, rows=data_list | |
) | |
st.session_state.dataset_ref = weave.publish(dataset) | |
entity = st.session_state.dataset_ref.entity | |
project = st.session_state.dataset_ref.project | |
dataset_name = st.session_state.dataset_name | |
digest = st.session_state.dataset_ref._digest | |
dataset_url = f"https://wandb.ai/{entity}/{project}/weave/objects/{dataset_name}/versions/{digest}" | |
st.markdown(f"Dataset published to [**Weave**]({dataset_url})") | |
if preview_in_app: | |
st.dataframe(dataframe.head(20)) | |
if len(dataframe) > 20: | |
st.markdown( | |
f"⚠️ Dataset is too large to preview in app, please explore in the [**Weave UI**]({dataset_url})" | |
) | |
st.session_state.is_dataset_published = True | |
if st.session_state.is_dataset_published: | |
guardrail_names = st.sidebar.multiselect( | |
"Select Guardrails", | |
options=[ | |
cls_name | |
for cls_name, cls_obj in vars( | |
import_module("guardrails_genie.guardrails") | |
).items() | |
if isinstance(cls_obj, type) and cls_name != "GuardrailManager" | |
], | |
) | |
st.session_state.guardrail_names = guardrail_names | |
initialize_guardrails() | |
evaluation_name = st.sidebar.text_input("Evaluation Name", value="") | |
st.session_state.evaluation_name = evaluation_name | |
start_evaluations_button = st.sidebar.button("Start Evaluations") | |
st.session_state.start_evaluations_button = start_evaluations_button | |
if st.session_state.start_evaluations_button: | |
# st.write(len(st.session_state.guardrails)) | |
evaluation = weave.Evaluation( | |
dataset=st.session_state.dataset_ref, | |
scorers=[AccuracyMetric()], | |
streamlit_mode=True, | |
) | |
with st.expander("Evaluation Results", expanded=True): | |
evaluation_summary, call = asyncio.run( | |
evaluation.evaluate.call( | |
evaluation, | |
GuardrailManager(guardrails=st.session_state.guardrails), | |
__weave={ | |
"display_name": ( | |
"Evaluation.evaluate" | |
if st.session_state.evaluation_name == "" | |
else "Evaluation.evaluate:" | |
+ st.session_state.evaluation_name | |
) | |
}, | |
) | |
) | |
x_axis = list(evaluation_summary["AccuracyMetric"].keys()) | |
y_axis = [ | |
evaluation_summary["AccuracyMetric"][x_axis_item] | |
for x_axis_item in x_axis | |
] | |
st.bar_chart( | |
pd.DataFrame({"Metric": x_axis, "Score": y_axis}), | |
x="Metric", | |
y="Score", | |
) | |
st.markdown( | |
f"Explore the entire evaluation trace table in [Weave]({call.ui_url})" | |
) | |
else: | |
st.warning("Please authenticate your WandB account to use this feature.") | |