Spaces:
Running
Running
import streamlit as st | |
import weave | |
from dotenv import load_dotenv | |
from guardrails_genie.llm import OpenAIModel | |
load_dotenv() | |
weave.init(project_name="guardrails-genie") | |
openai_model = st.sidebar.selectbox("OpenAI LLM", ["", "gpt-4o-mini", "gpt-4o"]) | |
chat_condition = openai_model != "" | |
if chat_condition: | |
st.title("Guardrails Genie") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
llm_model = OpenAIModel(model_name="gpt-4o-mini") | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# React to user input | |
if prompt := st.chat_input("What is up?"): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
response, call = llm_model.predict.call( | |
llm_model, user_prompts=prompt, messages=st.session_state.messages | |
) | |
response = response.choices[0].message.content | |
response += f"\n\n---\n[Explore in Weave]({call.ui_url})" | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |