guardrails-genie / guardrails_genie /train_classifier.py
geekyrakshit's picture
update: app
159baa9
raw
history blame
3.42 kB
import evaluate
import numpy as np
import streamlit as st
from datasets import load_dataset
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
)
from transformers.trainer_callback import TrainerControl, TrainerState
import wandb
class StreamlitProgressbarCallback(TrainerCallback):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.progress_bar = st.progress(0, text="Training")
def on_step_begin(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
super().on_step_begin(args, state, control, **kwargs)
self.progress_bar.progress(
(state.global_step * 100 // state.max_steps) + 1,
text=f"Training {state.global_step} / {state.max_steps}",
)
def train_binary_classifier(
project_name: str,
entity_name: str,
run_name: str,
dataset_repo: str = "geekyrakshit/prompt-injection-dataset",
model_name: str = "distilbert/distilbert-base-uncased",
learning_rate: float = 2e-5,
batch_size: int = 16,
num_epochs: int = 2,
weight_decay: float = 0.01,
streamlit_mode: bool = False,
):
wandb.init(project=project_name, entity=entity_name, name=run_name)
if streamlit_mode:
st.markdown(
f"Explore your training logs on [Weights & Biases]({wandb.run.url})"
)
dataset = load_dataset(dataset_repo)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def preprocess_function(examples):
return tokenizer(examples["prompt"], truncation=True)
tokenized_datasets = dataset.map(preprocess_function, batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return accuracy.compute(predictions=predictions, references=labels)
id2label = {0: "SAFE", 1: "INJECTION"}
label2id = {"SAFE": 0, "INJECTION": 1}
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=2,
id2label=id2label,
label2id=label2id,
)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="binary-classifier",
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=weight_decay,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=True,
report_to="wandb",
logging_strategy="steps",
logging_steps=1,
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[StreamlitProgressbarCallback()] if streamlit_mode else [],
)
try:
training_output = trainer.train()
except Exception as e:
wandb.finish()
raise e
wandb.finish()
return training_output