geekyrakshit's picture
update: docs
2633ee9
from typing import Optional, Union
import regex as re
import weave
from pydantic import BaseModel
class RegexResult(BaseModel):
passed: bool
matched_patterns: dict[str, list[str]]
failed_patterns: list[str]
class RegexModel(weave.Model):
"""
Initialize RegexModel with a dictionary of patterns.
Args:
patterns (Dict[str, str]): Dictionary where key is pattern name and value is regex pattern.
"""
patterns: Optional[Union[dict[str, str], dict[str, list[str]]]] = None
def __init__(
self, patterns: Optional[Union[dict[str, str], dict[str, list[str]]]] = None
) -> None:
super().__init__(patterns=patterns)
normalized_patterns = {}
for k, v in patterns.items():
normalized_patterns[k] = v if isinstance(v, list) else [v]
self._compiled_patterns = {
name: [re.compile(p) for p in pattern]
for name, pattern in normalized_patterns.items()
}
@weave.op()
def check(self, text: str) -> RegexResult:
"""
Check text against all patterns and return detailed results.
Args:
text: Input text to check against patterns
Returns:
RegexResult containing pass/fail status and details about matches
"""
matched_patterns = {}
failed_patterns = []
for pattern_name, pats in self._compiled_patterns.items():
matches = []
for pattern in pats:
for match in pattern.finditer(text):
if match.groups():
# If there are capture groups, join them with a separator
matches.append(
"-".join(str(g) for g in match.groups() if g is not None)
)
else:
# If no capture groups, use the full match
matches.append(match.group(0))
if matches:
matched_patterns[pattern_name] = matches
else:
failed_patterns.append(pattern_name)
return RegexResult(
matched_patterns=matched_patterns,
failed_patterns=failed_patterns,
passed=len(matched_patterns) == 0,
)
@weave.op()
def predict(self, text: str) -> RegexResult:
"""
Alias for check() to maintain consistency with other models.
"""
return self.check(text)