geekyrakshit commited on
Commit
573a89c
·
1 Parent(s): 8647e3b

add: llama guard fine-tuner[WIP]

Browse files
app.py CHANGED
@@ -18,8 +18,19 @@ train_classifier_page = st.Page(
18
  title="Train Classifier",
19
  icon=":material/fitness_center:",
20
  )
 
 
 
 
 
21
  page_navigation = st.navigation(
22
- [intro_page, chat_page, evaluation_page, train_classifier_page]
 
 
 
 
 
 
23
  )
24
  st.set_page_config(page_title="Guardrails Genie", page_icon=":material/guardian:")
25
  page_navigation.run()
 
18
  title="Train Classifier",
19
  icon=":material/fitness_center:",
20
  )
21
+ llama_guard_fine_tuning_page = st.Page(
22
+ "application_pages/llama_guard_fine_tuning.py",
23
+ title="Fine-Tune LLama Guard",
24
+ icon=":material/star:",
25
+ )
26
  page_navigation = st.navigation(
27
+ [
28
+ intro_page,
29
+ chat_page,
30
+ evaluation_page,
31
+ train_classifier_page,
32
+ llama_guard_fine_tuning_page,
33
+ ]
34
  )
35
  st.set_page_config(page_title="Guardrails Genie", page_icon=":material/guardian:")
36
  page_navigation.run()
application_pages/llama_guard_fine_tuning.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ from guardrails_genie.train.llama_guard import DatasetArgs, LlamaGuardFineTuner
4
+
5
+
6
+ def initialize_session_state():
7
+ st.session_state.llama_guard_fine_tuner = LlamaGuardFineTuner(streamlit_mode=True)
8
+ if "dataset_address" not in st.session_state:
9
+ st.session_state.dataset_address = ""
10
+ if "train_dataset_range" not in st.session_state:
11
+ st.session_state.train_dataset_range = 0
12
+ if "test_dataset_range" not in st.session_state:
13
+ st.session_state.test_dataset_range = 0
14
+ if "load_dataset_button" not in st.session_state:
15
+ st.session_state.load_dataset_button = False
16
+
17
+
18
+ initialize_session_state()
19
+ st.title(":material/star: Fine-Tune LLama Guard")
20
+
21
+ dataset_address = st.sidebar.text_input("Dataset Address", value="")
22
+ st.session_state.dataset_address = dataset_address
23
+
24
+ if st.session_state.dataset_address != "":
25
+ train_dataset_range = st.sidebar.number_input(
26
+ "Train Dataset Range", value=0, min_value=0, max_value=252956
27
+ )
28
+ test_dataset_range = st.sidebar.number_input(
29
+ "Test Dataset Range", value=0, min_value=0, max_value=63240
30
+ )
31
+ st.session_state.train_dataset_range = train_dataset_range
32
+ st.session_state.test_dataset_range = test_dataset_range
33
+ load_dataset_button = st.sidebar.button("Load Dataset")
34
+ st.session_state.load_dataset_button = load_dataset_button
35
+ if load_dataset_button:
36
+ with st.status("Dataset Arguments"):
37
+ dataset_args = DatasetArgs(
38
+ dataset_address=st.session_state.dataset_address,
39
+ train_dataset_range=st.session_state.train_dataset_range,
40
+ test_dataset_range=st.session_state.test_dataset_range,
41
+ )
42
+ st.session_state.llama_guard_fine_tuner.load_dataset(dataset_args)
43
+ st.session_state.llama_guard_fine_tuner.show_dataset_sample()
guardrails_genie/train/llama_guard.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import streamlit as st
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from datasets import load_dataset
6
+ from pydantic import BaseModel
7
+ from rich.progress import track
8
+ from sklearn.metrics import roc_auc_score, roc_curve
9
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
10
+
11
+
12
+ class DatasetArgs(BaseModel):
13
+ dataset_address: str
14
+ train_dataset_range: int
15
+ test_dataset_range: int
16
+
17
+
18
+ class LlamaGuardFineTuner:
19
+ def __init__(self, streamlit_mode: bool = False):
20
+ self.streamlit_mode = streamlit_mode
21
+
22
+ def load_dataset(self, dataset_args: DatasetArgs):
23
+ dataset = load_dataset(dataset_args.dataset_address)
24
+ self.train_dataset = (
25
+ dataset["train"]
26
+ if dataset_args.train_dataset_range > 0
27
+ else dataset["train"].select(range(dataset_args.train_dataset_range))
28
+ )
29
+ self.test_dataset = (
30
+ dataset["test"]
31
+ if dataset_args.test_dataset_range > 0
32
+ else dataset["test"].select(range(dataset_args.test_dataset_range))
33
+ )
34
+
35
+ def load_model(self, model_name: str = "meta-llama/Prompt-Guard-86M"):
36
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
37
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
38
+ self.model = AutoModelForSequenceClassification.from_pretrained(model_name).to(
39
+ self.device
40
+ )
41
+
42
+ def show_dataset_sample(self):
43
+ if self.streamlit_mode:
44
+ st.markdown("### Train Dataset Sample")
45
+ st.dataframe(self.train_dataset.to_pandas().head())
46
+ st.markdown("### Test Dataset Sample")
47
+ st.dataframe(self.test_dataset.to_pandas().head())
48
+
49
+ def evaluate_batch(
50
+ self,
51
+ texts,
52
+ batch_size: int = 32,
53
+ positive_label: int = 2,
54
+ temperature: float = 1.0,
55
+ truncation: bool = True,
56
+ max_length: int = 512,
57
+ ) -> list[float]:
58
+ self.model.eval()
59
+ encoded_texts = self.tokenizer(
60
+ texts,
61
+ padding=True,
62
+ truncation=truncation,
63
+ max_length=max_length,
64
+ return_tensors="pt",
65
+ )
66
+ dataset = torch.utils.data.TensorDataset(
67
+ encoded_texts["input_ids"], encoded_texts["attention_mask"]
68
+ )
69
+ data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size)
70
+
71
+ scores = []
72
+ for batch in track(data_loader, description="Evaluating"):
73
+ input_ids, attention_mask = [b.to(self.device) for b in batch]
74
+ with torch.no_grad():
75
+ logits = self.model(
76
+ input_ids=input_ids, attention_mask=attention_mask
77
+ ).logits
78
+ scaled_logits = logits / temperature
79
+ probabilities = F.softmax(scaled_logits, dim=-1)
80
+ positive_class_probabilities = (
81
+ probabilities[:, positive_label].cpu().numpy()
82
+ )
83
+ scores.extend(positive_class_probabilities)
84
+
85
+ return scores
86
+
87
+ def visualize_roc_curve(self, test_scores: list[float]):
88
+ plt.figure(figsize=(8, 6))
89
+ test_labels = [int(elt) for elt in self.test_dataset["label"]]
90
+ fpr, tpr, _ = roc_curve(test_labels, test_scores)
91
+ roc_auc = roc_auc_score(test_labels, test_scores)
92
+ plt.plot(
93
+ fpr,
94
+ tpr,
95
+ color="darkorange",
96
+ lw=2,
97
+ label=f"ROC curve (area = {roc_auc:.3f})",
98
+ )
99
+ plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")
100
+ plt.xlim([0.0, 1.0])
101
+ plt.ylim([0.0, 1.05])
102
+ plt.xlabel("False Positive Rate")
103
+ plt.ylabel("True Positive Rate")
104
+ plt.title("Receiver Operating Characteristic")
105
+ plt.legend(loc="lower right")
106
+ if self.streamlit_mode:
107
+ st.pyplot(plt)
108
+ else:
109
+ plt.show()
110
+
111
+ def evaluate_model(
112
+ self,
113
+ batch_size: int = 32,
114
+ positive_label: int = 2,
115
+ temperature: float = 3.0,
116
+ truncation: bool = True,
117
+ max_length: int = 512,
118
+ ):
119
+ test_scores = self.evaluate_batch(
120
+ self.test_dataset["text"],
121
+ batch_size=batch_size,
122
+ positive_label=positive_label,
123
+ temperature=temperature,
124
+ truncation=truncation,
125
+ max_length=max_length,
126
+ )
127
+ self.visualize_roc_curve(test_scores)
128
+ return test_scores
pyproject.toml CHANGED
@@ -16,6 +16,9 @@ dependencies = [
16
  "transformers>=4.46.3",
17
  "torch>=2.5.1",
18
  "instructor>=1.7.0",
 
 
 
19
  ]
20
 
21
  [project.optional-dependencies]
 
16
  "transformers>=4.46.3",
17
  "torch>=2.5.1",
18
  "instructor>=1.7.0",
19
+ "matplotlib>=3.9.3",
20
+ "plotly>=5.24.1",
21
+ "scikit-learn>=1.5.2",
22
  ]
23
 
24
  [project.optional-dependencies]