Spaces:
Running
Running
param-bharat
commited on
Commit
•
63bfd18
1
Parent(s):
f4dbf56
feat: add secrets detection benchmarking script
Browse files- benchmarks/secrets_benchmark.py +166 -0
benchmarks/secrets_benchmark.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import weave
|
5 |
+
from guardrails import Guard
|
6 |
+
from guardrails.hub import SecretsPresent
|
7 |
+
from llm_guard.input_scanners import Secrets
|
8 |
+
from llm_guard.util import configure_logger
|
9 |
+
|
10 |
+
from guardrails_genie.guardrails import GuardrailManager
|
11 |
+
from guardrails_genie.guardrails.base import Guardrail
|
12 |
+
from guardrails_genie.guardrails.secrets_detection import (
|
13 |
+
SecretsDetectionResponse,
|
14 |
+
SecretsDetectionSimpleResponse,
|
15 |
+
SecretsDetectionGuardrail,
|
16 |
+
)
|
17 |
+
from guardrails_genie.metrics import AccuracyMetric
|
18 |
+
|
19 |
+
logger = configure_logger(log_level="ERROR")
|
20 |
+
|
21 |
+
|
22 |
+
class GuardrailsAISecretsDetector(Guardrail):
|
23 |
+
validator: Any
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
validator = Guard().use(SecretsPresent, on_fail="fix")
|
27 |
+
super().__init__(validator=validator)
|
28 |
+
|
29 |
+
def scan(self, text: str) -> dict:
|
30 |
+
response = self.validator.validate(text)
|
31 |
+
if response.validation_summaries:
|
32 |
+
summary = response.validation_summaries[0]
|
33 |
+
return {
|
34 |
+
"has_secret": True,
|
35 |
+
"detected_secrets": {
|
36 |
+
str(k): v
|
37 |
+
for k, v in enumerate(
|
38 |
+
summary.failure_reason.splitlines()[1:], start=1
|
39 |
+
)
|
40 |
+
},
|
41 |
+
"explanation": summary.failure_reason,
|
42 |
+
"modified_prompt": response.validated_output,
|
43 |
+
"risk_score": 1.0,
|
44 |
+
}
|
45 |
+
else:
|
46 |
+
return {
|
47 |
+
"has_secret": False,
|
48 |
+
"detected_secrets": None,
|
49 |
+
"explanation": "No secrets detected in the text.",
|
50 |
+
"modified_prompt": response.validated_output,
|
51 |
+
"risk_score": 0.0,
|
52 |
+
}
|
53 |
+
|
54 |
+
@weave.op
|
55 |
+
def guard(
|
56 |
+
self,
|
57 |
+
prompt: str,
|
58 |
+
return_detected_secrets: bool = True,
|
59 |
+
**kwargs,
|
60 |
+
) -> SecretsDetectionResponse | SecretsDetectionResponse:
|
61 |
+
results = self.scan(prompt)
|
62 |
+
|
63 |
+
if return_detected_secrets:
|
64 |
+
return SecretsDetectionResponse(
|
65 |
+
contains_secrets=results["has_secret"],
|
66 |
+
detected_secrets=results["detected_secrets"],
|
67 |
+
explanation=results["explanation"],
|
68 |
+
redacted_text=results["modified_prompt"],
|
69 |
+
risk_score=results["risk_score"],
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
return SecretsDetectionSimpleResponse(
|
73 |
+
contains_secrets=not results["has_secret"],
|
74 |
+
explanation=results["explanation"],
|
75 |
+
redacted_text=results["modified_prompt"],
|
76 |
+
risk_score=results["risk_score"],
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
class LLMGuardSecretsDetector(Guardrail):
|
81 |
+
validator: Any
|
82 |
+
|
83 |
+
def __init__(self):
|
84 |
+
validator = Secrets(redact_mode="all")
|
85 |
+
super().__init__(validator=validator)
|
86 |
+
|
87 |
+
def scan(self, text: str) -> dict:
|
88 |
+
sanitized_prompt, is_valid, risk_score = self.validator.scan(text)
|
89 |
+
if is_valid:
|
90 |
+
return {
|
91 |
+
"has_secret": not is_valid,
|
92 |
+
"detected_secrets": None,
|
93 |
+
"explanation": "No secrets detected in the text.",
|
94 |
+
"modified_prompt": sanitized_prompt,
|
95 |
+
"risk_score": risk_score,
|
96 |
+
}
|
97 |
+
else:
|
98 |
+
return {
|
99 |
+
"has_secret": not is_valid,
|
100 |
+
"detected_secrets": {},
|
101 |
+
"explanation": "This library does not return detected secrets.",
|
102 |
+
"modified_prompt": sanitized_prompt,
|
103 |
+
"risk_score": risk_score,
|
104 |
+
}
|
105 |
+
|
106 |
+
@weave.op
|
107 |
+
def guard(
|
108 |
+
self,
|
109 |
+
prompt: str,
|
110 |
+
return_detected_secrets: bool = True,
|
111 |
+
**kwargs,
|
112 |
+
) -> SecretsDetectionResponse | SecretsDetectionResponse:
|
113 |
+
results = self.scan(prompt)
|
114 |
+
if return_detected_secrets:
|
115 |
+
return SecretsDetectionResponse(
|
116 |
+
contains_secrets=results["has_secret"],
|
117 |
+
detected_secrets=results["detected_secrets"],
|
118 |
+
explanation=results["explanation"],
|
119 |
+
redacted_text=results["modified_prompt"],
|
120 |
+
risk_score=results["risk_score"],
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
return SecretsDetectionSimpleResponse(
|
124 |
+
contains_secrets=not results["has_secret"],
|
125 |
+
explanation=results["explanation"],
|
126 |
+
redacted_text=results["modified_prompt"],
|
127 |
+
risk_score=results["risk_score"],
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
def main():
|
132 |
+
client = weave.init("parambharat/secrets-detection")
|
133 |
+
dataset = weave.ref("secrets-detection-benchmark:latest").get()
|
134 |
+
llm_guard_guardrail = LLMGuardSecretsDetector()
|
135 |
+
guardrails_ai_guardrail = GuardrailsAISecretsDetector()
|
136 |
+
guardrails_genie_guardrail = SecretsDetectionGuardrail()
|
137 |
+
|
138 |
+
all_guards = [
|
139 |
+
llm_guard_guardrail,
|
140 |
+
guardrails_ai_guardrail,
|
141 |
+
guardrails_genie_guardrail,
|
142 |
+
]
|
143 |
+
evaluation = weave.Evaluation(
|
144 |
+
dataset=dataset.rows,
|
145 |
+
scorers=[AccuracyMetric()],
|
146 |
+
)
|
147 |
+
|
148 |
+
for guard in all_guards:
|
149 |
+
name = guard.__class__.__name__
|
150 |
+
guardrail_manager = GuardrailManager(
|
151 |
+
guardrails=[
|
152 |
+
guard,
|
153 |
+
]
|
154 |
+
)
|
155 |
+
|
156 |
+
results = asyncio.run(
|
157 |
+
evaluation.evaluate(
|
158 |
+
guardrail_manager,
|
159 |
+
__weave={"display_name": f"{name}"},
|
160 |
+
)
|
161 |
+
)
|
162 |
+
print(results)
|
163 |
+
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
main()
|