reach-vb's picture
reach-vb HF staff
Stereo demo update (#60)
5325fcc
raw
history blame
12.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Main model for using AudioGen. This will combine all the required components
and provide easy access to the generation API.
"""
import typing as tp
import torch
from .encodec import CompressionModel
from .lm import LMModel
from .builders import get_debug_compression_model, get_debug_lm_model
from .loaders import load_compression_model, load_lm_model
from ..data.audio_utils import convert_audio
from ..modules.conditioners import ConditioningAttributes
from ..utils.autocast import TorchAutocast
class AudioGen:
"""AudioGen main model with convenient generation API.
Args:
name (str): name of the model.
compression_model (CompressionModel): Compression model
used to map audio to invertible discrete representations.
lm (LMModel): Language model over discrete representations.
max_duration (float, optional): maximum duration the model can produce,
otherwise, inferred from the training params.
"""
def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel,
max_duration: tp.Optional[float] = None):
self.name = name
self.compression_model = compression_model
self.lm = lm
# Just to be safe, let's put everything in eval mode.
self.compression_model.eval()
self.lm.eval()
if max_duration is None:
if hasattr(lm, 'cfg'):
max_duration = lm.cfg.dataset.segment_duration # type: ignore
else:
raise ValueError("You must provide max_duration when building directly AudioGen")
assert max_duration is not None
self.max_duration: float = max_duration
self.device = next(iter(lm.parameters())).device
self.generation_params: dict = {}
self.set_generation_params(duration=5) # 5 seconds by default
self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None
if self.device.type == 'cpu':
self.autocast = TorchAutocast(enabled=False)
else:
self.autocast = TorchAutocast(
enabled=True, device_type=self.device.type, dtype=torch.float16)
@property
def frame_rate(self) -> float:
"""Roughly the number of AR steps per seconds."""
return self.compression_model.frame_rate
@property
def sample_rate(self) -> int:
"""Sample rate of the generated audio."""
return self.compression_model.sample_rate
@property
def audio_channels(self) -> int:
"""Audio channels of the generated audio."""
return self.compression_model.channels
@staticmethod
def get_pretrained(name: str = 'facebook/audiogen-medium', device=None):
"""Return pretrained model, we provide a single model for now:
- facebook/audiogen-medium (1.5B), text to sound,
# see: https://huggingface.co/facebook/audiogen-medium
"""
if device is None:
if torch.cuda.device_count():
device = 'cuda'
else:
device = 'cpu'
if name == 'debug':
# used only for unit tests
compression_model = get_debug_compression_model(device, sample_rate=16000)
lm = get_debug_lm_model(device)
return AudioGen(name, compression_model, lm, max_duration=10)
compression_model = load_compression_model(name, device=device)
lm = load_lm_model(name, device=device)
assert 'self_wav' not in lm.condition_provider.conditioners, \
"AudioGen do not support waveform conditioning for now"
return AudioGen(name, compression_model, lm)
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
top_p: float = 0.0, temperature: float = 1.0,
duration: float = 10.0, cfg_coef: float = 3.0,
two_step_cfg: bool = False, extend_stride: float = 2):
"""Set the generation parameters for AudioGen.
Args:
use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True.
top_k (int, optional): top_k used for sampling. Defaults to 250.
top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0.
temperature (float, optional): Softmax temperature parameter. Defaults to 1.0.
duration (float, optional): Duration of the generated waveform. Defaults to 10.0.
cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0.
two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance,
instead of batching together the two. This has some impact on how things
are padded but seems to have little impact in practice.
extend_stride: when doing extended generation (i.e. more than 10 seconds), by how much
should we extend the audio each time. Larger values will mean less context is
preserved, and shorter value will require extra computations.
"""
assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration."
self.extend_stride = extend_stride
self.duration = duration
self.generation_params = {
'use_sampling': use_sampling,
'temp': temperature,
'top_k': top_k,
'top_p': top_p,
'cfg_coef': cfg_coef,
'two_step_cfg': two_step_cfg,
}
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None):
"""Override the default progress callback."""
self._progress_callback = progress_callback
def generate(self, descriptions: tp.List[str], progress: bool = False) -> torch.Tensor:
"""Generate samples conditioned on text.
Args:
descriptions (list of str): A list of strings used as text conditioning.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
"""
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None)
assert prompt_tokens is None
return self._generate_tokens(attributes, prompt_tokens, progress)
def generate_continuation(self, prompt: torch.Tensor, prompt_sample_rate: int,
descriptions: tp.Optional[tp.List[tp.Optional[str]]] = None,
progress: bool = False) -> torch.Tensor:
"""Generate samples conditioned on audio prompts.
Args:
prompt (torch.Tensor): A batch of waveforms used for continuation.
Prompt should be [B, C, T], or [C, T] if only one sample is generated.
prompt_sample_rate (int): Sampling rate of the given audio waveforms.
descriptions (list of str, optional): A list of strings used as text conditioning. Defaults to None.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
"""
if prompt.dim() == 2:
prompt = prompt[None]
if prompt.dim() != 3:
raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).")
prompt = convert_audio(prompt, prompt_sample_rate, self.sample_rate, self.audio_channels)
if descriptions is None:
descriptions = [None] * len(prompt)
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt)
assert prompt_tokens is not None
return self._generate_tokens(attributes, prompt_tokens, progress)
@torch.no_grad()
def _prepare_tokens_and_attributes(
self,
descriptions: tp.Sequence[tp.Optional[str]],
prompt: tp.Optional[torch.Tensor],
) -> tp.Tuple[tp.List[ConditioningAttributes], tp.Optional[torch.Tensor]]:
"""Prepare model inputs.
Args:
descriptions (list of str): A list of strings used as text conditioning.
prompt (torch.Tensor): A batch of waveforms used for continuation.
"""
attributes = [
ConditioningAttributes(text={'description': description})
for description in descriptions]
if prompt is not None:
if descriptions is not None:
assert len(descriptions) == len(prompt), "Prompt and nb. descriptions doesn't match"
prompt = prompt.to(self.device)
prompt_tokens, scale = self.compression_model.encode(prompt)
assert scale is None
else:
prompt_tokens = None
return attributes, prompt_tokens
def _generate_tokens(self, attributes: tp.List[ConditioningAttributes],
prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor:
"""Generate discrete audio tokens given audio prompt and/or conditions.
Args:
attributes (list of ConditioningAttributes): Conditions used for generation (here text).
prompt_tokens (torch.Tensor, optional): Audio prompt used for continuation.
progress (bool, optional): Flag to display progress of the generation process. Defaults to False.
Returns:
torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params.
"""
total_gen_len = int(self.duration * self.frame_rate)
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
current_gen_offset: int = 0
def _progress_callback(generated_tokens: int, tokens_to_generate: int):
generated_tokens += current_gen_offset
if self._progress_callback is not None:
# Note that total_gen_len might be quite wrong depending on the
# codebook pattern used, but with delay it is almost accurate.
self._progress_callback(generated_tokens, total_gen_len)
else:
print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r')
if prompt_tokens is not None:
assert max_prompt_len >= prompt_tokens.shape[-1], \
"Prompt is longer than audio to generate"
callback = None
if progress:
callback = _progress_callback
if self.duration <= self.max_duration:
# generate by sampling from LM, simple case.
with self.autocast:
gen_tokens = self.lm.generate(
prompt_tokens, attributes,
callback=callback, max_gen_len=total_gen_len, **self.generation_params)
else:
all_tokens = []
if prompt_tokens is None:
prompt_length = 0
else:
all_tokens.append(prompt_tokens)
prompt_length = prompt_tokens.shape[-1]
stride_tokens = int(self.frame_rate * self.extend_stride)
while current_gen_offset + prompt_length < total_gen_len:
time_offset = current_gen_offset / self.frame_rate
chunk_duration = min(self.duration - time_offset, self.max_duration)
max_gen_len = int(chunk_duration * self.frame_rate)
with self.autocast:
gen_tokens = self.lm.generate(
prompt_tokens, attributes,
callback=callback, max_gen_len=max_gen_len, **self.generation_params)
if prompt_tokens is None:
all_tokens.append(gen_tokens)
else:
all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:])
prompt_tokens = gen_tokens[:, :, stride_tokens:]
prompt_length = prompt_tokens.shape[-1]
current_gen_offset += stride_tokens
gen_tokens = torch.cat(all_tokens, dim=-1)
# generate audio
assert gen_tokens.dim() == 3
with torch.no_grad():
gen_audio = self.compression_model.decode(gen_tokens, None)
return gen_audio