Spaces:
Runtime error
Runtime error
File size: 18,696 Bytes
992a789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class AnimateLCMSVDStochasticIterativeSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class AnimateLCMSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
"""
Multistep and onestep sampling for consistency models.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 40):
The number of diffusion steps to train the model.
sigma_min (`float`, defaults to 0.002):
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
sigma_max (`float`, defaults to 80.0):
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
sigma_data (`float`, defaults to 0.5):
The standard deviation of the data distribution from the EDM
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
s_noise (`float`, defaults to 1.0):
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
1.011]. Defaults to 1.0 from the original implementation.
rho (`float`, defaults to 7.0):
The parameter for calculating the Karras sigma schedule from the EDM
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
clip_denoised (`bool`, defaults to `True`):
Whether to clip the denoised outputs to `(-1, 1)`.
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
increasing order.
"""
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 40,
sigma_min: float = 0.002,
sigma_max: float = 80.0,
sigma_data: float = 0.5,
s_noise: float = 1.0,
rho: float = 7.0,
clip_denoised: bool = True,
):
# standard deviation of the initial noise distribution
self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
# self.init_noise_sigma = sigma_max
ramp = np.linspace(0, 1, num_train_timesteps)
sigmas = self._convert_to_karras(ramp)
sigmas = np.concatenate([sigmas, np.array([0])])
timesteps = self.sigma_to_t(sigmas)
# setable values
self.num_inference_steps = None
self.sigmas = torch.from_numpy(sigmas)
self.timesteps = torch.from_numpy(timesteps)
self.custom_timesteps = False
self.is_scale_input_called = False
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
return indices.item()
@property
def step_index(self):
"""
The index counter for current timestep. It will increae 1 after each scheduler step.
"""
return self._step_index
def scale_model_input(
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
) -> torch.FloatTensor:
"""
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`float` or `torch.FloatTensor`):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
# Get sigma corresponding to timestep
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
self.is_scale_input_called = True
return sample
# def _sigma_to_t(self, sigma, log_sigmas):
# # get log sigma
# log_sigma = np.log(np.maximum(sigma, 1e-10))
# # get distribution
# dists = log_sigma - log_sigmas[:, np.newaxis]
# # get sigmas range
# low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
# high_idx = low_idx + 1
# low = log_sigmas[low_idx]
# high = log_sigmas[high_idx]
# # interpolate sigmas
# w = (low - log_sigma) / (low - high)
# w = np.clip(w, 0, 1)
# # transform interpolation to time range
# t = (1 - w) * low_idx + w * high_idx
# t = t.reshape(sigma.shape)
# return t
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
"""
Gets scaled timesteps from the Karras sigmas for input to the consistency model.
Args:
sigmas (`float` or `np.ndarray`):
A single Karras sigma or an array of Karras sigmas.
Returns:
`float` or `np.ndarray`:
A scaled input timestep or scaled input timestep array.
"""
if not isinstance(sigmas, np.ndarray):
sigmas = np.array(sigmas, dtype=np.float64)
timesteps = 0.25 * np.log(sigmas + 1e-44)
return timesteps
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
`num_inference_steps` must be `None`.
"""
if num_inference_steps is None and timesteps is None:
raise ValueError(
"Exactly one of `num_inference_steps` or `timesteps` must be supplied."
)
if num_inference_steps is not None and timesteps is not None:
raise ValueError(
"Can only pass one of `num_inference_steps` or `timesteps`."
)
# Follow DDPMScheduler custom timesteps logic
if timesteps is not None:
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`timesteps` must be in descending order.")
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
)
timesteps = np.array(timesteps, dtype=np.int64)
self.custom_timesteps = True
else:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
timesteps = (
(np.arange(0, num_inference_steps) * step_ratio)
.round()[::-1]
.copy()
.astype(np.int64)
)
self.custom_timesteps = False
# Map timesteps to Karras sigmas directly for multistep sampling
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
num_train_timesteps = self.config.num_train_timesteps
ramp = timesteps[::-1].copy()
ramp = ramp / (num_train_timesteps - 1)
sigmas = self._convert_to_karras(ramp)
timesteps = self.sigma_to_t(sigmas)
sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas).to(device=device)
if str(device).startswith("mps"):
# mps does not support float64
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
else:
self.timesteps = torch.from_numpy(timesteps).to(device=device)
self._step_index = None
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Modified _convert_to_karras implementation that takes in ramp as argument
def _convert_to_karras(self, ramp):
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = self.config.sigma_min
sigma_max: float = self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def get_scalings(self, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
return c_skip, c_out
def get_scalings_for_boundary_condition(self, sigma):
"""
Gets the scalings used in the consistency model parameterization (from Appendix C of the
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
<Tip>
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
</Tip>
Args:
sigma (`torch.FloatTensor`):
The current sigma in the Karras sigma schedule.
Returns:
`tuple`:
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
(which weights the consistency model output) is the second element.
"""
sigma_min = self.config.sigma_min
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
return c_skip, c_out
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
index_candidates = (self.timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(index_candidates) > 1:
step_index = index_candidates[1]
else:
step_index = index_candidates[0]
self._step_index = step_index.item()
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[AnimateLCMSVDStochasticIterativeSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from the learned diffusion model.
timestep (`float`):
The current timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`:
If return_dict is `True`,
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
f" `{self.__class__}.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if not self.is_scale_input_called:
logger.warning(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
sigma_min = self.config.sigma_min
sigma_max = self.config.sigma_max
if self.step_index is None:
self._init_step_index(timestep)
# sigma_next corresponds to next_t in original implementation
sigma = self.sigmas[self.step_index]
if self.step_index + 1 < self.config.num_train_timesteps:
sigma_next = self.sigmas[self.step_index + 1]
else:
# Set sigma_next to sigma_min
sigma_next = self.sigmas[-1]
# Get scalings for boundary conditions
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
# 1. Denoise model output using boundary conditions
denoised = c_out * model_output + c_skip * sample
if self.config.clip_denoised:
denoised = denoised.clamp(-1, 1)
# 2. Sample z ~ N(0, s_noise^2 * I)
# Noise is not used for onestep sampling.
if len(self.timesteps) > 1:
noise = randn_tensor(
model_output.shape,
dtype=model_output.dtype,
device=model_output.device,
generator=generator,
)
else:
noise = torch.zeros_like(model_output)
z = noise * self.config.s_noise
sigma_hat = sigma_next.clamp(min=0, max=sigma_max)
print("denoise currently")
print(sigma_hat)
# origin
prev_sample = denoised + z * sigma_hat
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return AnimateLCMSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(
device=original_samples.device, dtype=original_samples.dtype
)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(
original_samples.device, dtype=torch.float32
)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|