File size: 32,176 Bytes
e68321e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""
TensorFlow, Keras and TFLite versions of YOLOv5
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
Usage:
$ python models/tf.py --weights yolov5s.pt
Export:
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
"""
import argparse
import sys
from copy import deepcopy
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
from tensorflow import keras
from models.common import (
C3,
SPP,
SPPF,
Bottleneck,
BottleneckCSP,
C3x,
Concat,
Conv,
CrossConv,
DWConv,
DWConvTranspose2d,
Focus,
autopad,
)
from models.experimental import MixConv2d, attempt_load
from models.yolo import Detect, Segment
from utils.activations import SiLU
from utils.general import LOGGER, make_divisible, print_args
class TFBN(keras.layers.Layer):
# TensorFlow BatchNormalization wrapper
def __init__(self, w=None):
"""Initializes a TensorFlow BatchNormalization layer with optional pretrained weights."""
super().__init__()
self.bn = keras.layers.BatchNormalization(
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
epsilon=w.eps,
)
def call(self, inputs):
"""Applies batch normalization to the inputs."""
return self.bn(inputs)
class TFPad(keras.layers.Layer):
# Pad inputs in spatial dimensions 1 and 2
def __init__(self, pad):
"""
Initializes a padding layer for spatial dimensions 1 and 2 with specified padding, supporting both int and tuple
inputs.
Inputs are
"""
super().__init__()
if isinstance(pad, int):
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
else: # tuple/list
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
def call(self, inputs):
"""Pads input tensor with zeros using specified padding, suitable for int and tuple pad dimensions."""
return tf.pad(inputs, self.pad, mode="constant", constant_values=0)
class TFConv(keras.layers.Layer):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
"""
Initializes a standard convolution layer with optional batch normalization and activation; supports only
group=1.
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
"""
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
conv = keras.layers.Conv2D(
filters=c2,
kernel_size=k,
strides=s,
padding="SAME" if s == 1 else "VALID",
use_bias=not hasattr(w, "bn"),
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
)
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
self.act = activations(w.act) if act else tf.identity
def call(self, inputs):
"""Applies convolution, batch normalization, and activation function to input tensors."""
return self.act(self.bn(self.conv(inputs)))
class TFDWConv(keras.layers.Layer):
# Depthwise convolution
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
"""
Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow
models.
Input are ch_in, ch_out, weights, kernel, stride, padding, groups.
"""
super().__init__()
assert c2 % c1 == 0, f"TFDWConv() output={c2} must be a multiple of input={c1} channels"
conv = keras.layers.DepthwiseConv2D(
kernel_size=k,
depth_multiplier=c2 // c1,
strides=s,
padding="SAME" if s == 1 else "VALID",
use_bias=not hasattr(w, "bn"),
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
)
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
self.act = activations(w.act) if act else tf.identity
def call(self, inputs):
"""Applies convolution, batch normalization, and activation function to input tensors."""
return self.act(self.bn(self.conv(inputs)))
class TFDWConvTranspose2d(keras.layers.Layer):
# Depthwise ConvTranspose2d
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
"""
Initializes depthwise ConvTranspose2D layer with specific channel, kernel, stride, and padding settings.
Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
"""
super().__init__()
assert c1 == c2, f"TFDWConv() output={c2} must be equal to input={c1} channels"
assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1"
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
self.c1 = c1
self.conv = [
keras.layers.Conv2DTranspose(
filters=1,
kernel_size=k,
strides=s,
padding="VALID",
output_padding=p2,
use_bias=True,
kernel_initializer=keras.initializers.Constant(weight[..., i : i + 1]),
bias_initializer=keras.initializers.Constant(bias[i]),
)
for i in range(c1)
]
def call(self, inputs):
"""Processes input through parallel convolutions and concatenates results, trimming border pixels."""
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
class TFFocus(keras.layers.Layer):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
"""
Initializes TFFocus layer to focus width and height information into channel space with custom convolution
parameters.
Inputs are ch_in, ch_out, kernel, stride, padding, groups.
"""
super().__init__()
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
def call(self, inputs):
"""
Performs pixel shuffling and convolution on input tensor, downsampling by 2 and expanding channels by 4.
Example x(b,w,h,c) -> y(b,w/2,h/2,4c).
"""
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
return self.conv(tf.concat(inputs, 3))
class TFBottleneck(keras.layers.Layer):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes a standard bottleneck layer for TensorFlow models, expanding and contracting channels with optional
shortcut.
Arguments are ch_in, ch_out, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
self.add = shortcut and c1 == c2
def call(self, inputs):
"""Performs forward pass; if shortcut is True & input/output channels match, adds input to the convolution
result.
"""
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
class TFCrossConv(keras.layers.Layer):
# Cross Convolution
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
"""Initializes cross convolution layer with optional expansion, grouping, and shortcut addition capabilities."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
self.add = shortcut and c1 == c2
def call(self, inputs):
"""Passes input through two convolutions optionally adding the input if channel dimensions match."""
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
class TFConv2d(keras.layers.Layer):
# Substitution for PyTorch nn.Conv2D
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
"""Initializes a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D functionality for given filter
sizes and stride.
"""
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
self.conv = keras.layers.Conv2D(
filters=c2,
kernel_size=k,
strides=s,
padding="VALID",
use_bias=bias,
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
)
def call(self, inputs):
"""Applies a convolution operation to the inputs and returns the result."""
return self.conv(inputs)
class TFBottleneckCSP(keras.layers.Layer):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes CSP bottleneck layer with specified channel sizes, count, shortcut option, groups, and expansion
ratio.
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
self.bn = TFBN(w.bn)
self.act = lambda x: keras.activations.swish(x)
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
"""Processes input through the model layers, concatenates, normalizes, activates, and reduces the output
dimensions.
"""
y1 = self.cv3(self.m(self.cv1(inputs)))
y2 = self.cv2(inputs)
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
class TFC3(keras.layers.Layer):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes CSP Bottleneck with 3 convolutions, supporting optional shortcuts and group convolutions.
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
def call(self, inputs):
"""
Processes input through a sequence of transformations for object detection (YOLOv5).
See https://github.com/ultralytics/yolov5.
"""
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
class TFC3x(keras.layers.Layer):
# 3 module with cross-convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
"""
Initializes layer with cross-convolutions for enhanced feature extraction in object detection models.
Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
self.m = keras.Sequential(
[TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]
)
def call(self, inputs):
"""Processes input through cascaded convolutions and merges features, returning the final tensor output."""
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
class TFSPP(keras.layers.Layer):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
"""Initializes a YOLOv3-SPP layer with specific input/output channels and kernel sizes for pooling."""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k]
def call(self, inputs):
"""Processes input through two TFConv layers and concatenates with max-pooled outputs at intermediate stage."""
x = self.cv1(inputs)
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
class TFSPPF(keras.layers.Layer):
# Spatial pyramid pooling-Fast layer
def __init__(self, c1, c2, k=5, w=None):
"""Initializes a fast spatial pyramid pooling layer with customizable in/out channels, kernel size, and
weights.
"""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME")
def call(self, inputs):
"""Executes the model's forward pass, concatenating input features with three max-pooled versions before final
convolution.
"""
x = self.cv1(inputs)
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
class TFDetect(keras.layers.Layer):
# TF YOLOv5 Detect layer
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):
"""Initializes YOLOv5 detection layer for TensorFlow with configurable classes, anchors, channels, and image
size.
"""
super().__init__()
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [tf.zeros(1)] * self.nl # init grid
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
self.training = False # set to False after building model
self.imgsz = imgsz
for i in range(self.nl):
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
self.grid[i] = self._make_grid(nx, ny)
def call(self, inputs):
"""Performs forward pass through the model layers to predict object bounding boxes and classifications."""
z = [] # inference output
x = []
for i in range(self.nl):
x.append(self.m[i](inputs[i]))
# x(bs,20,20,255) to x(bs,3,20,20,85)
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
if not self.training: # inference
y = x[i]
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
# Normalize xywh to 0-1 to reduce calibration error
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :]], -1)
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
@staticmethod
def _make_grid(nx=20, ny=20):
"""Generates a 2D grid of coordinates in (x, y) format with shape [1, 1, ny*nx, 2]."""
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
class TFSegment(TFDetect):
# YOLOv5 Segment head for segmentation models
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
"""Initializes YOLOv5 Segment head with specified channel depths, anchors, and input size for segmentation
models.
"""
super().__init__(nc, anchors, ch, imgsz, w)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.no = 5 + nc + self.nm # number of outputs per anchor
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
self.detect = TFDetect.call
def call(self, x):
"""Applies detection and proto layers on input, returning detections and optionally protos if training."""
p = self.proto(x[0])
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
x = self.detect(self, x)
return (x, p) if self.training else (x[0], p)
class TFProto(keras.layers.Layer):
def __init__(self, c1, c_=256, c2=32, w=None):
"""Initializes TFProto layer with convolutional and upsampling layers for feature extraction and
transformation.
"""
super().__init__()
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
self.upsample = TFUpsample(None, scale_factor=2, mode="nearest")
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
self.cv3 = TFConv(c_, c2, w=w.cv3)
def call(self, inputs):
"""Performs forward pass through the model, applying convolutions and upscaling on input tensor."""
return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
class TFUpsample(keras.layers.Layer):
# TF version of torch.nn.Upsample()
def __init__(self, size, scale_factor, mode, w=None):
"""
Initializes a TensorFlow upsampling layer with specified size, scale_factor, and mode, ensuring scale_factor is
even.
Warning: all arguments needed including 'w'
"""
super().__init__()
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
# with default arguments: align_corners=False, half_pixel_centers=False
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
# size=(x.shape[1] * 2, x.shape[2] * 2))
def call(self, inputs):
"""Applies upsample operation to inputs using nearest neighbor interpolation."""
return self.upsample(inputs)
class TFConcat(keras.layers.Layer):
# TF version of torch.concat()
def __init__(self, dimension=1, w=None):
"""Initializes a TensorFlow layer for NCHW to NHWC concatenation, requiring dimension=1."""
super().__init__()
assert dimension == 1, "convert only NCHW to NHWC concat"
self.d = 3
def call(self, inputs):
"""Concatenates a list of tensors along the last dimension, used for NCHW to NHWC conversion."""
return tf.concat(inputs, self.d)
def parse_model(d, ch, model, imgsz):
"""Parses a model definition dict `d` to create YOLOv5 model layers, including dynamic channel adjustments."""
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw, ch_mul = (
d["anchors"],
d["nc"],
d["depth_multiple"],
d["width_multiple"],
d.get("channel_multiple"),
)
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
if not ch_mul:
ch_mul = 8
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
m_str = m
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except NameError:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [
nn.Conv2d,
Conv,
DWConv,
DWConvTranspose2d,
Bottleneck,
SPP,
SPPF,
MixConv2d,
Focus,
CrossConv,
BottleneckCSP,
C3,
C3x,
]:
c1, c2 = ch[f], args[0]
c2 = make_divisible(c2 * gw, ch_mul) if c2 != no else c2
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3, C3x]:
args.insert(2, n)
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
elif m in [Detect, Segment]:
args.append([ch[x + 1] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
if m is Segment:
args[3] = make_divisible(args[3] * gw, ch_mul)
args.append(imgsz)
else:
c2 = ch[f]
tf_m = eval("TF" + m_str.replace("nn.", ""))
m_ = (
keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)])
if n > 1
else tf_m(*args, w=model.model[i])
) # module
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace("__main__.", "") # module type
np = sum(x.numel() for x in torch_m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info(f"{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}") # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
return keras.Sequential(layers), sorted(save)
class TFModel:
# TF YOLOv5 model
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640)):
"""Initializes TF YOLOv5 model with specified configuration, channels, classes, model instance, and input
size.
"""
super().__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml # for torch hub
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
# Define model
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override yaml value
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
def predict(
self,
inputs,
tf_nms=False,
agnostic_nms=False,
topk_per_class=100,
topk_all=100,
iou_thres=0.45,
conf_thres=0.25,
):
"""Runs inference on input data, with an option for TensorFlow NMS."""
y = [] # outputs
x = inputs
for m in self.model.layers:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
x = m(x) # run
y.append(x if m.i in self.savelist else None) # save output
# Add TensorFlow NMS
if tf_nms:
boxes = self._xywh2xyxy(x[0][..., :4])
probs = x[0][:, :, 4:5]
classes = x[0][:, :, 5:]
scores = probs * classes
if agnostic_nms:
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
else:
boxes = tf.expand_dims(boxes, 2)
nms = tf.image.combined_non_max_suppression(
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False
)
return (nms,)
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
# x = x[0] # [x(1,6300,85), ...] to x(6300,85)
# xywh = x[..., :4] # x(6300,4) boxes
# conf = x[..., 4:5] # x(6300,1) confidences
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
# return tf.concat([conf, cls, xywh], 1)
@staticmethod
def _xywh2xyxy(xywh):
"""Converts bounding box format from [x, y, w, h] to [x1, y1, x2, y2], where xy1=top-left and xy2=bottom-
right.
"""
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
class AgnosticNMS(keras.layers.Layer):
# TF Agnostic NMS
def call(self, input, topk_all, iou_thres, conf_thres):
"""Performs agnostic NMS on input tensors using given thresholds and top-K selection."""
return tf.map_fn(
lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
input,
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
name="agnostic_nms",
)
@staticmethod
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):
"""Performs agnostic non-maximum suppression (NMS) on detected objects, filtering based on IoU and confidence
thresholds.
"""
boxes, classes, scores = x
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
scores_inp = tf.reduce_max(scores, -1)
selected_inds = tf.image.non_max_suppression(
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres
)
selected_boxes = tf.gather(boxes, selected_inds)
padded_boxes = tf.pad(
selected_boxes,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
mode="CONSTANT",
constant_values=0.0,
)
selected_scores = tf.gather(scores_inp, selected_inds)
padded_scores = tf.pad(
selected_scores,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT",
constant_values=-1.0,
)
selected_classes = tf.gather(class_inds, selected_inds)
padded_classes = tf.pad(
selected_classes,
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
mode="CONSTANT",
constant_values=-1.0,
)
valid_detections = tf.shape(selected_inds)[0]
return padded_boxes, padded_scores, padded_classes, valid_detections
def activations(act=nn.SiLU):
"""Converts PyTorch activations to TensorFlow equivalents, supporting LeakyReLU, Hardswish, and SiLU/Swish."""
if isinstance(act, nn.LeakyReLU):
return lambda x: keras.activations.relu(x, alpha=0.1)
elif isinstance(act, nn.Hardswish):
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
elif isinstance(act, (nn.SiLU, SiLU)):
return lambda x: keras.activations.swish(x)
else:
raise Exception(f"no matching TensorFlow activation found for PyTorch activation {act}")
def representative_dataset_gen(dataset, ncalib=100):
"""Generates a representative dataset for calibration by yielding transformed numpy arrays from the input
dataset.
"""
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
im = np.transpose(img, [1, 2, 0])
im = np.expand_dims(im, axis=0).astype(np.float32)
im /= 255
yield [im]
if n >= ncalib:
break
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=(640, 640), # inference size h,w
batch_size=1, # batch size
dynamic=False, # dynamic batch size
):
# PyTorch model
"""Exports YOLOv5 model from PyTorch to TensorFlow and Keras formats, performing inference for validation."""
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
model = attempt_load(weights, device=torch.device("cpu"), inplace=True, fuse=False)
_ = model(im) # inference
model.info()
# TensorFlow model
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
_ = tf_model.predict(im) # inference
# Keras model
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
keras_model.summary()
LOGGER.info("PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.")
def parse_opt():
"""Parses and returns command-line options for model inference, including weights path, image size, batch size, and
dynamic batching.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--dynamic", action="store_true", help="dynamic batch size")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""Executes the YOLOv5 model run function with parsed command line options."""
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)
|