File size: 5,753 Bytes
2ab37d9 e68321e b3d2362 e68321e 53d71b3 e68321e b57633e 53d71b3 e68321e 53d71b3 e68321e 53d71b3 e68321e 53d71b3 e68321e 53d71b3 2c21eed e68321e acc2d5c 8b66239 69409ae 48de171 acc2d5c b5eeef5 48de171 acc2d5c af3bd88 e68321e 8b66239 e68321e 2c21eed a219d50 e8a9130 f5251c8 20a9f94 abb03da 20a9f94 abb03da 9feb793 97e57b1 3c0cd86 76c4600 20a9f94 61169c8 227aa8a 61169c8 7d6a431 ddb6193 227aa8a 2ed94e4 59e42e5 227aa8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
#ref: https://huggingface.co/spaces/Prgckwb/dicom-viewer/blob/main/app.py
#ref: https://huggingface.co/spaces/basilshaji/Lung_Nodule_Segmentation
import gradio as gr
import numpy as np
import polars as pl
import pydicom
from PIL import Image
from pydicom.errors import InvalidDicomError
import gradio as gr
import cv2
import requests
import os
import torch
import numpy as np
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression
from yolov5.utils.augmentations import letterbox
# Load YOLOv5 model (placeholder)
model_path = "best.pt" # Path to your YOLOv5 model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
model = attempt_load(model_path, device=device) # Placeholder for model loading
model.eval() # Set the model to evaluation mode
def preprocess_image(image):
img = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB,
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img, image
def infer(model, img):
with torch.no_grad():
pred = model(img)[0]
return pred
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
coords[:, :4].clip_(min=0, max=img1_shape[0]) # clip boxes
return coords
def postprocess(pred, img0, img):
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False)
results = []
for det in pred: # detections per image
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
for *xyxy, conf, cls in reversed(det):
results.append((xyxy, conf, cls))
return results
def detect_objects(image_path):
dicom_image, dicom_meta = read_and_preprocess_dicom(image_path)
img, img0 = preprocess_image(dicom_image)
pred = infer(model, img)
results = postprocess(pred, dicom_image, img)
return results, dicom_image, dicom_meta
def draw_bounding_boxes(img, results, dicom_meta):
dets = []
for (x1, y1, x2, y2), conf, cls in results:
zc = dicom_meta.loc[dicom_meta.Key == 'Instance Number', 'Value'].iloc[0]
x1, y1, x2, y2, zc, cls = map(int, [x1, y1, x2, y2, zc, cls])
xc = x1+(x2-x1)/2
yc = y1+(y2-y1)/2
conf = round(conf.detach().item(), 4)
dets.append([(xc, yc, zc), conf, cls])
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
return img, dets
def show_preds_image(filepath):
results, img0, dicom_meta = detect_objects(filepath)
img_with_boxes, results = draw_bounding_boxes(img0, results, dicom_meta)
print("Detections:", dicom_meta.loc[dicom_meta.Key == 'Series Instance UID', 'Value'].iloc[0], results)
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB), results, dicom_meta
def read_and_preprocess_dicom(file_path: str):
"""
Function to read and preprocess DICOM files
:param file_path: Path to the DICOM file
:return: Image data (in CV2 format) and metadata (in pandas DataFrame format)
"""
try:
# Read the DICOM file
dicom_data = pydicom.dcmread(file_path)
except InvalidDicomError:
raise gr.Error("The uploaded file is not a valid DICOM file.")
# Get the pixel data
try:
pixel_array = dicom_data.pixel_array
except AttributeError:
raise gr.Error("The uploaded DICOM file has no pixel data.")
# Normalize the pixel data to 8-bit and convert to a PIL image
if pixel_array.dtype != np.uint8:
pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
np.uint8)
image_pil = Image.fromarray(pixel_array)
image = image_pil.convert('RGB')
image = np.array(image)[:,:,::-1].copy()
# Collect metadata in dictionary format and convert to DataFrame
metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
df_metadata = pl.DataFrame({
"Key": list(metadata_dict.keys()),
"Value": list(metadata_dict.values())
})
return image, df_metadata.to_pandas() # Convert to pandas DataFrame for Gradio compatibility
# Define Gradio components
input_component = gr.File(label="Input DICOM Data")
dicom_image = gr.Image(type="numpy", label="Output Image")
dicom_meta = gr.Dataframe(headers=None, label="Metadata")
dets_res = gr.Text(label="Detections")
output_component = [dicom_image, dets_res, dicom_meta]
# Create Gradio interface
interface = gr.Interface(
fn=show_preds_image,
inputs=input_component,
outputs=output_component,
title="Lung Nodule Detection",
examples=['samples/110_109.dcm','samples/189_188.dcm'],
description= "This online deployment proves the effectiveness and efficient function of the machine learning model in identifying lung cancer nodules.",
live=False,
)
interface.launch()
|