File size: 5,753 Bytes
2ab37d9
 
 
 
 
 
 
 
 
 
e68321e
 
 
 
 
 
 
 
 
 
 
b3d2362
e68321e
 
 
 
53d71b3
 
 
e68321e
 
 
 
 
 
b57633e
53d71b3
e68321e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d71b3
e68321e
 
 
 
53d71b3
e68321e
 
 
 
 
53d71b3
 
e68321e
53d71b3
2c21eed
e68321e
acc2d5c
8b66239
69409ae
48de171
 
acc2d5c
 
b5eeef5
48de171
acc2d5c
af3bd88
e68321e
8b66239
e68321e
 
2c21eed
a219d50
e8a9130
f5251c8
20a9f94
 
 
 
 
abb03da
20a9f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abb03da
9feb793
 
97e57b1
3c0cd86
76c4600
20a9f94
 
 
 
 
 
 
 
 
61169c8
227aa8a
 
61169c8
 
7d6a431
ddb6193
227aa8a
 
 
 
 
 
 
2ed94e4
59e42e5
227aa8a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#ref: https://huggingface.co/spaces/Prgckwb/dicom-viewer/blob/main/app.py
#ref: https://huggingface.co/spaces/basilshaji/Lung_Nodule_Segmentation

import gradio as gr
import numpy as np
import polars as pl
import pydicom
from PIL import Image
from pydicom.errors import InvalidDicomError

import gradio as gr
import cv2
import requests
import os
import torch
import numpy as np
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression
from yolov5.utils.augmentations import letterbox

# Load YOLOv5 model (placeholder)
model_path = "best.pt"  # Path to your YOLOv5 model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # Use GPU if available
model = attempt_load(model_path, device=device)  # Placeholder for model loading
model.eval()  # Set the model to evaluation mode

def preprocess_image(image):
    img = letterbox(image, 640, stride=32, auto=True)[0]  # Resize and pad to 640x640
    img = img.transpose(2, 0, 1)[::-1]  # Convert BGR to RGB, 
    img = np.ascontiguousarray(img)
    img = torch.from_numpy(img).to(device)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    return img, image

def infer(model, img):
    with torch.no_grad():
        pred = model(img)[0]
    return pred

def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    coords[:, :4].clip_(min=0, max=img1_shape[0])  # clip boxes
    return coords

def postprocess(pred, img0, img):    
    pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False)
    results = []
    for det in pred:  # detections per image
        if len(det):
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
            for *xyxy, conf, cls in reversed(det):
                results.append((xyxy, conf, cls))
    return results

def detect_objects(image_path):
    dicom_image, dicom_meta = read_and_preprocess_dicom(image_path)
    img, img0 = preprocess_image(dicom_image)
    pred = infer(model, img)
    results = postprocess(pred, dicom_image, img)
    return results, dicom_image, dicom_meta

def draw_bounding_boxes(img, results, dicom_meta):
    dets = []
    for (x1, y1, x2, y2), conf, cls in results:
        zc = dicom_meta.loc[dicom_meta.Key == 'Instance Number', 'Value'].iloc[0]
        x1, y1, x2, y2, zc, cls = map(int, [x1, y1, x2, y2, zc, cls])
        xc = x1+(x2-x1)/2
        yc = y1+(y2-y1)/2
        conf = round(conf.detach().item(), 4)

        dets.append([(xc, yc, zc), conf, cls])
        cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
        cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
    return img, dets

def show_preds_image(filepath):
    results, img0, dicom_meta = detect_objects(filepath)
    img_with_boxes, results = draw_bounding_boxes(img0, results, dicom_meta)
    print("Detections:", dicom_meta.loc[dicom_meta.Key == 'Series Instance UID', 'Value'].iloc[0], results)
    return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB), results, dicom_meta

def read_and_preprocess_dicom(file_path: str):
    """
    Function to read and preprocess DICOM files
    :param file_path: Path to the DICOM file
    :return: Image data (in CV2 format) and metadata (in pandas DataFrame format)
    """
    try:
        # Read the DICOM file
        dicom_data = pydicom.dcmread(file_path)
    except InvalidDicomError:
        raise gr.Error("The uploaded file is not a valid DICOM file.")

    # Get the pixel data
    try:
        pixel_array = dicom_data.pixel_array
    except AttributeError:
        raise gr.Error("The uploaded DICOM file has no pixel data.")

    # Normalize the pixel data to 8-bit and convert to a PIL image
    if pixel_array.dtype != np.uint8:
        pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
            np.uint8)
    image_pil = Image.fromarray(pixel_array)
    
    image = image_pil.convert('RGB')

    image = np.array(image)[:,:,::-1].copy()

    # Collect metadata in dictionary format and convert to DataFrame
    metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
    df_metadata = pl.DataFrame({
        "Key": list(metadata_dict.keys()),
        "Value": list(metadata_dict.values())
    })

    return image, df_metadata.to_pandas()  # Convert to pandas DataFrame for Gradio compatibility


# Define Gradio components
input_component = gr.File(label="Input DICOM Data")
dicom_image = gr.Image(type="numpy", label="Output Image")
dicom_meta = gr.Dataframe(headers=None, label="Metadata")
dets_res = gr.Text(label="Detections")
output_component = [dicom_image, dets_res, dicom_meta]

# Create Gradio interface
interface = gr.Interface(
    fn=show_preds_image,
    inputs=input_component,
    outputs=output_component,
    title="Lung Nodule Detection",
    examples=['samples/110_109.dcm','samples/189_188.dcm'],
    description= "This online deployment proves the effectiveness and efficient function of the machine learning model in identifying lung cancer nodules.",
    live=False,
)

interface.launch()