|
|
|
|
|
|
|
name: YOLOv5 CI |
|
|
|
on: |
|
push: |
|
branches: [master] |
|
pull_request: |
|
branches: [master] |
|
schedule: |
|
- cron: "0 0 * * *" |
|
workflow_dispatch: |
|
|
|
jobs: |
|
Benchmarks: |
|
runs-on: ${{ matrix.os }} |
|
strategy: |
|
fail-fast: false |
|
matrix: |
|
os: [ubuntu-latest] |
|
python-version: ["3.11"] |
|
model: [yolov5n] |
|
steps: |
|
- uses: actions/checkout@v4 |
|
- uses: actions/setup-python@v5 |
|
with: |
|
python-version: ${{ matrix.python-version }} |
|
cache: "pip" |
|
- name: Install requirements |
|
run: | |
|
python -m pip install --upgrade pip wheel |
|
pip install -r requirements.txt coremltools openvino-dev "tensorflow-cpu<2.15.1" --extra-index-url https://download.pytorch.org/whl/cpu |
|
yolo checks |
|
pip list |
|
- name: Benchmark DetectionModel |
|
run: | |
|
python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29 |
|
- name: Benchmark SegmentationModel |
|
run: | |
|
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22 |
|
- name: Test predictions |
|
run: | |
|
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224 |
|
python detect.py --weights ${{ matrix.model }}.onnx --img 320 |
|
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320 |
|
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224 |
|
|
|
Tests: |
|
timeout-minutes: 60 |
|
runs-on: ${{ matrix.os }} |
|
strategy: |
|
fail-fast: false |
|
matrix: |
|
os: [ubuntu-latest, windows-latest, macos-14] |
|
python-version: ["3.11"] |
|
model: [yolov5n] |
|
include: |
|
- os: ubuntu-latest |
|
python-version: "3.8" |
|
model: yolov5n |
|
torch: "1.8.0" |
|
steps: |
|
- uses: actions/checkout@v4 |
|
- uses: actions/setup-python@v5 |
|
with: |
|
python-version: ${{ matrix.python-version }} |
|
cache: "pip" |
|
- name: Install requirements |
|
run: | |
|
python -m pip install --upgrade pip wheel |
|
torch="" |
|
if [ "${{ matrix.torch }}" == "1.8.0" ]; then |
|
torch="torch==1.8.0 torchvision==0.9.0" |
|
fi |
|
pip install -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu |
|
shell: bash |
|
- name: Check environment |
|
run: | |
|
yolo checks |
|
pip list |
|
- name: Test detection |
|
shell: bash |
|
run: | |
|
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories |
|
m=${{ matrix.model }} # official weights |
|
b=runs/train/exp/weights/best # best.pt checkpoint |
|
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train |
|
for d in cpu; do # devices |
|
for w in $m $b; do # weights |
|
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val |
|
python detect.py --imgsz 64 --weights $w.pt --device $d # detect |
|
done |
|
done |
|
python hubconf.py --model $m # hub |
|
# python models/tf.py --weights $m.pt # build TF model |
|
python models/yolo.py --cfg $m.yaml # build PyTorch model |
|
python export.py --weights $m.pt --img 64 --include torchscript # export |
|
python - <<EOF |
|
import torch |
|
im = torch.zeros([1, 3, 64, 64]) |
|
for path in '$m', '$b': |
|
model = torch.hub.load('.', 'custom', path=path, source='local') |
|
print(model('data/images/bus.jpg')) |
|
model(im) # warmup, build grids for trace |
|
torch.jit.trace(model, [im]) |
|
EOF |
|
- name: Test segmentation |
|
shell: bash |
|
run: | |
|
m=${{ matrix.model }}-seg # official weights |
|
b=runs/train-seg/exp/weights/best # best.pt checkpoint |
|
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train |
|
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train |
|
for d in cpu; do # devices |
|
for w in $m $b; do # weights |
|
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val |
|
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict |
|
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export |
|
done |
|
done |
|
- name: Test classification |
|
shell: bash |
|
run: | |
|
m=${{ matrix.model }}-cls.pt # official weights |
|
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint |
|
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train |
|
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val |
|
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict |
|
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict |
|
python export.py --weights $b --img 64 --include torchscript # export |
|
python - <<EOF |
|
import torch |
|
for path in '$m', '$b': |
|
model = torch.hub.load('.', 'custom', path=path, source='local') |
|
EOF |
|
|
|
Summary: |
|
runs-on: ubuntu-latest |
|
needs: [Benchmarks, Tests] |
|
if: always() |
|
steps: |
|
- name: Check for failure and notify |
|
if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push') |
|
uses: slackapi/[email protected] |
|
with: |
|
payload: | |
|
{"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"} |
|
env: |
|
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }} |
|
|