|
|
|
"""Logging utils.""" |
|
|
|
import json |
|
import os |
|
import warnings |
|
from pathlib import Path |
|
|
|
import pkg_resources as pkg |
|
import torch |
|
|
|
from utils.general import LOGGER, colorstr, cv2 |
|
from utils.loggers.clearml.clearml_utils import ClearmlLogger |
|
from utils.loggers.wandb.wandb_utils import WandbLogger |
|
from utils.plots import plot_images, plot_labels, plot_results |
|
from utils.torch_utils import de_parallel |
|
|
|
LOGGERS = ("csv", "tb", "wandb", "clearml", "comet") |
|
RANK = int(os.getenv("RANK", -1)) |
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except ImportError: |
|
|
|
def SummaryWriter(*args): |
|
"""Fall back to SummaryWriter returning None if TensorBoard is not installed.""" |
|
return None |
|
|
|
|
|
try: |
|
import wandb |
|
|
|
assert hasattr(wandb, "__version__") |
|
if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}: |
|
try: |
|
wandb_login_success = wandb.login(timeout=30) |
|
except wandb.errors.UsageError: |
|
wandb_login_success = False |
|
if not wandb_login_success: |
|
wandb = None |
|
except (ImportError, AssertionError): |
|
wandb = None |
|
|
|
try: |
|
import clearml |
|
|
|
assert hasattr(clearml, "__version__") |
|
except (ImportError, AssertionError): |
|
clearml = None |
|
|
|
try: |
|
if RANK in {0, -1}: |
|
import comet_ml |
|
|
|
assert hasattr(comet_ml, "__version__") |
|
from utils.loggers.comet import CometLogger |
|
|
|
else: |
|
comet_ml = None |
|
except (ImportError, AssertionError): |
|
comet_ml = None |
|
|
|
|
|
def _json_default(value): |
|
""" |
|
Format `value` for JSON serialization (e.g. unwrap tensors). |
|
|
|
Fall back to strings. |
|
""" |
|
if isinstance(value, torch.Tensor): |
|
try: |
|
value = value.item() |
|
except ValueError: |
|
pass |
|
return value if isinstance(value, float) else str(value) |
|
|
|
|
|
class Loggers: |
|
|
|
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): |
|
"""Initializes loggers for YOLOv5 training and validation metrics, paths, and options.""" |
|
self.save_dir = save_dir |
|
self.weights = weights |
|
self.opt = opt |
|
self.hyp = hyp |
|
self.plots = not opt.noplots |
|
self.logger = logger |
|
self.include = include |
|
self.keys = [ |
|
"train/box_loss", |
|
"train/obj_loss", |
|
"train/cls_loss", |
|
"metrics/precision", |
|
"metrics/recall", |
|
"metrics/mAP_0.5", |
|
"metrics/mAP_0.5:0.95", |
|
"val/box_loss", |
|
"val/obj_loss", |
|
"val/cls_loss", |
|
"x/lr0", |
|
"x/lr1", |
|
"x/lr2", |
|
] |
|
self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"] |
|
for k in LOGGERS: |
|
setattr(self, k, None) |
|
self.csv = True |
|
self.ndjson_console = "ndjson_console" in self.include |
|
self.ndjson_file = "ndjson_file" in self.include |
|
|
|
|
|
if not comet_ml: |
|
prefix = colorstr("Comet: ") |
|
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet" |
|
self.logger.info(s) |
|
|
|
s = self.save_dir |
|
if "tb" in self.include and not self.opt.evolve: |
|
prefix = colorstr("TensorBoard: ") |
|
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") |
|
self.tb = SummaryWriter(str(s)) |
|
|
|
|
|
if wandb and "wandb" in self.include: |
|
self.opt.hyp = self.hyp |
|
self.wandb = WandbLogger(self.opt) |
|
else: |
|
self.wandb = None |
|
|
|
|
|
if clearml and "clearml" in self.include: |
|
try: |
|
self.clearml = ClearmlLogger(self.opt, self.hyp) |
|
except Exception: |
|
self.clearml = None |
|
prefix = colorstr("ClearML: ") |
|
LOGGER.warning( |
|
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging." |
|
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme" |
|
) |
|
|
|
else: |
|
self.clearml = None |
|
|
|
|
|
if comet_ml and "comet" in self.include: |
|
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"): |
|
run_id = self.opt.resume.split("/")[-1] |
|
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id) |
|
|
|
else: |
|
self.comet_logger = CometLogger(self.opt, self.hyp) |
|
|
|
else: |
|
self.comet_logger = None |
|
|
|
@property |
|
def remote_dataset(self): |
|
"""Fetches dataset dictionary from remote logging services like ClearML, Weights & Biases, or Comet ML.""" |
|
data_dict = None |
|
if self.clearml: |
|
data_dict = self.clearml.data_dict |
|
if self.wandb: |
|
data_dict = self.wandb.data_dict |
|
if self.comet_logger: |
|
data_dict = self.comet_logger.data_dict |
|
|
|
return data_dict |
|
|
|
def on_train_start(self): |
|
"""Initializes the training process for Comet ML logger if it's configured.""" |
|
if self.comet_logger: |
|
self.comet_logger.on_train_start() |
|
|
|
def on_pretrain_routine_start(self): |
|
"""Invokes pre-training routine start hook for Comet ML logger if available.""" |
|
if self.comet_logger: |
|
self.comet_logger.on_pretrain_routine_start() |
|
|
|
def on_pretrain_routine_end(self, labels, names): |
|
"""Callback that runs at the end of pre-training routine, logging label plots if enabled.""" |
|
if self.plots: |
|
plot_labels(labels, names, self.save_dir) |
|
paths = self.save_dir.glob("*labels*.jpg") |
|
if self.wandb: |
|
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) |
|
if self.comet_logger: |
|
self.comet_logger.on_pretrain_routine_end(paths) |
|
if self.clearml: |
|
for path in paths: |
|
self.clearml.log_plot(title=path.stem, plot_path=path) |
|
|
|
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals): |
|
"""Logs training batch end events, plots images, and updates external loggers with batch-end data.""" |
|
log_dict = dict(zip(self.keys[:3], vals)) |
|
|
|
|
|
if self.plots: |
|
if ni < 3: |
|
f = self.save_dir / f"train_batch{ni}.jpg" |
|
plot_images(imgs, targets, paths, f) |
|
if ni == 0 and self.tb and not self.opt.sync_bn: |
|
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz)) |
|
if ni == 10 and (self.wandb or self.clearml): |
|
files = sorted(self.save_dir.glob("train*.jpg")) |
|
if self.wandb: |
|
self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) |
|
if self.clearml: |
|
self.clearml.log_debug_samples(files, title="Mosaics") |
|
|
|
if self.comet_logger: |
|
self.comet_logger.on_train_batch_end(log_dict, step=ni) |
|
|
|
def on_train_epoch_end(self, epoch): |
|
"""Callback that updates the current epoch in Weights & Biases at the end of a training epoch.""" |
|
if self.wandb: |
|
self.wandb.current_epoch = epoch + 1 |
|
|
|
if self.comet_logger: |
|
self.comet_logger.on_train_epoch_end(epoch) |
|
|
|
def on_val_start(self): |
|
"""Callback that signals the start of a validation phase to the Comet logger.""" |
|
if self.comet_logger: |
|
self.comet_logger.on_val_start() |
|
|
|
def on_val_image_end(self, pred, predn, path, names, im): |
|
"""Callback that logs a validation image and its predictions to WandB or ClearML.""" |
|
if self.wandb: |
|
self.wandb.val_one_image(pred, predn, path, names, im) |
|
if self.clearml: |
|
self.clearml.log_image_with_boxes(path, pred, names, im) |
|
|
|
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out): |
|
"""Logs validation batch results to Comet ML during training at the end of each validation batch.""" |
|
if self.comet_logger: |
|
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out) |
|
|
|
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix): |
|
"""Logs validation results to WandB or ClearML at the end of the validation process.""" |
|
if self.wandb or self.clearml: |
|
files = sorted(self.save_dir.glob("val*.jpg")) |
|
if self.wandb: |
|
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) |
|
if self.clearml: |
|
self.clearml.log_debug_samples(files, title="Validation") |
|
|
|
if self.comet_logger: |
|
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) |
|
|
|
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): |
|
"""Callback that logs metrics and saves them to CSV or NDJSON at the end of each fit (train+val) epoch.""" |
|
x = dict(zip(self.keys, vals)) |
|
if self.csv: |
|
file = self.save_dir / "results.csv" |
|
n = len(x) + 1 |
|
s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n") |
|
with open(file, "a") as f: |
|
f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n") |
|
if self.ndjson_console or self.ndjson_file: |
|
json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default) |
|
if self.ndjson_console: |
|
print(json_data) |
|
if self.ndjson_file: |
|
file = self.save_dir / "results.ndjson" |
|
with open(file, "a") as f: |
|
print(json_data, file=f) |
|
|
|
if self.tb: |
|
for k, v in x.items(): |
|
self.tb.add_scalar(k, v, epoch) |
|
elif self.clearml: |
|
self.clearml.log_scalars(x, epoch) |
|
|
|
if self.wandb: |
|
if best_fitness == fi: |
|
best_results = [epoch] + vals[3:7] |
|
for i, name in enumerate(self.best_keys): |
|
self.wandb.wandb_run.summary[name] = best_results[i] |
|
self.wandb.log(x) |
|
self.wandb.end_epoch() |
|
|
|
if self.clearml: |
|
self.clearml.current_epoch_logged_images = set() |
|
self.clearml.current_epoch += 1 |
|
|
|
if self.comet_logger: |
|
self.comet_logger.on_fit_epoch_end(x, epoch=epoch) |
|
|
|
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): |
|
"""Callback that handles model saving events, logging to Weights & Biases or ClearML if enabled.""" |
|
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1: |
|
if self.wandb: |
|
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) |
|
if self.clearml: |
|
self.clearml.task.update_output_model( |
|
model_path=str(last), model_name="Latest Model", auto_delete_file=False |
|
) |
|
|
|
if self.comet_logger: |
|
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi) |
|
|
|
def on_train_end(self, last, best, epoch, results): |
|
"""Callback that runs at the end of training to save plots and log results.""" |
|
if self.plots: |
|
plot_results(file=self.save_dir / "results.csv") |
|
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))] |
|
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] |
|
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") |
|
|
|
if self.tb and not self.clearml: |
|
for f in files: |
|
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC") |
|
|
|
if self.wandb: |
|
self.wandb.log(dict(zip(self.keys[3:10], results))) |
|
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) |
|
|
|
if not self.opt.evolve: |
|
wandb.log_artifact( |
|
str(best if best.exists() else last), |
|
type="model", |
|
name=f"run_{self.wandb.wandb_run.id}_model", |
|
aliases=["latest", "best", "stripped"], |
|
) |
|
self.wandb.finish_run() |
|
|
|
if self.clearml and not self.opt.evolve: |
|
self.clearml.log_summary(dict(zip(self.keys[3:10], results))) |
|
[self.clearml.log_plot(title=f.stem, plot_path=f) for f in files] |
|
self.clearml.log_model( |
|
str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch |
|
) |
|
|
|
if self.comet_logger: |
|
final_results = dict(zip(self.keys[3:10], results)) |
|
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results) |
|
|
|
def on_params_update(self, params: dict): |
|
"""Updates experiment hyperparameters or configurations in WandB, Comet, or ClearML.""" |
|
if self.wandb: |
|
self.wandb.wandb_run.config.update(params, allow_val_change=True) |
|
if self.comet_logger: |
|
self.comet_logger.on_params_update(params) |
|
if self.clearml: |
|
self.clearml.task.connect(params) |
|
|
|
|
|
class GenericLogger: |
|
""" |
|
YOLOv5 General purpose logger for non-task specific logging |
|
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...) |
|
Arguments |
|
opt: Run arguments |
|
console_logger: Console logger |
|
include: loggers to include |
|
""" |
|
|
|
def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")): |
|
"""Initializes a generic logger with optional TensorBoard, W&B, and ClearML support.""" |
|
self.save_dir = Path(opt.save_dir) |
|
self.include = include |
|
self.console_logger = console_logger |
|
self.csv = self.save_dir / "results.csv" |
|
if "tb" in self.include: |
|
prefix = colorstr("TensorBoard: ") |
|
self.console_logger.info( |
|
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/" |
|
) |
|
self.tb = SummaryWriter(str(self.save_dir)) |
|
|
|
if wandb and "wandb" in self.include: |
|
self.wandb = wandb.init( |
|
project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt |
|
) |
|
else: |
|
self.wandb = None |
|
|
|
if clearml and "clearml" in self.include: |
|
try: |
|
|
|
hyp = {} if "hyp" not in opt else opt.hyp |
|
self.clearml = ClearmlLogger(opt, hyp) |
|
except Exception: |
|
self.clearml = None |
|
prefix = colorstr("ClearML: ") |
|
LOGGER.warning( |
|
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging." |
|
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration" |
|
) |
|
else: |
|
self.clearml = None |
|
|
|
def log_metrics(self, metrics, epoch): |
|
"""Logs metrics to CSV, TensorBoard, W&B, and ClearML; `metrics` is a dict, `epoch` is an int.""" |
|
if self.csv: |
|
keys, vals = list(metrics.keys()), list(metrics.values()) |
|
n = len(metrics) + 1 |
|
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") |
|
with open(self.csv, "a") as f: |
|
f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n") |
|
|
|
if self.tb: |
|
for k, v in metrics.items(): |
|
self.tb.add_scalar(k, v, epoch) |
|
|
|
if self.wandb: |
|
self.wandb.log(metrics, step=epoch) |
|
|
|
if self.clearml: |
|
self.clearml.log_scalars(metrics, epoch) |
|
|
|
def log_images(self, files, name="Images", epoch=0): |
|
"""Logs images to all loggers with optional naming and epoch specification.""" |
|
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] |
|
files = [f for f in files if f.exists()] |
|
|
|
if self.tb: |
|
for f in files: |
|
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC") |
|
|
|
if self.wandb: |
|
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch) |
|
|
|
if self.clearml: |
|
if name == "Results": |
|
[self.clearml.log_plot(f.stem, f) for f in files] |
|
else: |
|
self.clearml.log_debug_samples(files, title=name) |
|
|
|
def log_graph(self, model, imgsz=(640, 640)): |
|
"""Logs model graph to all configured loggers with specified input image size.""" |
|
if self.tb: |
|
log_tensorboard_graph(self.tb, model, imgsz) |
|
|
|
def log_model(self, model_path, epoch=0, metadata=None): |
|
"""Logs the model to all configured loggers with optional epoch and metadata.""" |
|
if metadata is None: |
|
metadata = {} |
|
|
|
if self.wandb: |
|
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata) |
|
art.add_file(str(model_path)) |
|
wandb.log_artifact(art) |
|
if self.clearml: |
|
self.clearml.log_model(model_path=model_path, model_name=model_path.stem) |
|
|
|
def update_params(self, params): |
|
"""Updates logged parameters in WandB and/or ClearML if enabled.""" |
|
if self.wandb: |
|
wandb.run.config.update(params, allow_val_change=True) |
|
if self.clearml: |
|
self.clearml.task.connect(params) |
|
|
|
|
|
def log_tensorboard_graph(tb, model, imgsz=(640, 640)): |
|
"""Logs the model graph to TensorBoard with specified image size and model.""" |
|
try: |
|
p = next(model.parameters()) |
|
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz |
|
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), []) |
|
except Exception as e: |
|
LOGGER.warning(f"WARNING ⚠️ TensorBoard graph visualization failure {e}") |
|
|
|
|
|
def web_project_name(project): |
|
"""Converts a local project name to a standardized web project name with optional suffixes.""" |
|
if not project.startswith("runs/train"): |
|
return project |
|
suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else "" |
|
return f"YOLOv5{suffix}" |
|
|