|
|
|
"""Main Logger class for ClearML experiment tracking.""" |
|
|
|
import glob |
|
import re |
|
from pathlib import Path |
|
|
|
import matplotlib.image as mpimg |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import yaml |
|
from ultralytics.utils.plotting import Annotator, colors |
|
|
|
try: |
|
import clearml |
|
from clearml import Dataset, Task |
|
|
|
assert hasattr(clearml, "__version__") |
|
except (ImportError, AssertionError): |
|
clearml = None |
|
|
|
|
|
def construct_dataset(clearml_info_string): |
|
"""Load in a clearml dataset and fill the internal data_dict with its contents.""" |
|
dataset_id = clearml_info_string.replace("clearml://", "") |
|
dataset = Dataset.get(dataset_id=dataset_id) |
|
dataset_root_path = Path(dataset.get_local_copy()) |
|
|
|
|
|
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml"))) |
|
if len(yaml_filenames) > 1: |
|
raise ValueError( |
|
"More than one yaml file was found in the dataset root, cannot determine which one contains " |
|
"the dataset definition this way." |
|
) |
|
elif not yaml_filenames: |
|
raise ValueError( |
|
"No yaml definition found in dataset root path, check that there is a correct yaml file " |
|
"inside the dataset root path." |
|
) |
|
with open(yaml_filenames[0]) as f: |
|
dataset_definition = yaml.safe_load(f) |
|
|
|
assert set( |
|
dataset_definition.keys() |
|
).issuperset( |
|
{"train", "test", "val", "nc", "names"} |
|
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')" |
|
|
|
data_dict = { |
|
"train": ( |
|
str((dataset_root_path / dataset_definition["train"]).resolve()) if dataset_definition["train"] else None |
|
) |
|
} |
|
data_dict["test"] = ( |
|
str((dataset_root_path / dataset_definition["test"]).resolve()) if dataset_definition["test"] else None |
|
) |
|
data_dict["val"] = ( |
|
str((dataset_root_path / dataset_definition["val"]).resolve()) if dataset_definition["val"] else None |
|
) |
|
data_dict["nc"] = dataset_definition["nc"] |
|
data_dict["names"] = dataset_definition["names"] |
|
|
|
return data_dict |
|
|
|
|
|
class ClearmlLogger: |
|
""" |
|
Log training runs, datasets, models, and predictions to ClearML. |
|
|
|
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, this information |
|
includes hyperparameters, system configuration and metrics, model metrics, code information and basic data metrics |
|
and analyses. |
|
|
|
By providing additional command line arguments to train.py, datasets, models and predictions can also be logged. |
|
""" |
|
|
|
def __init__(self, opt, hyp): |
|
""" |
|
- Initialize ClearML Task, this object will capture the experiment |
|
- Upload dataset version to ClearML Data if opt.upload_dataset is True |
|
|
|
arguments: |
|
opt (namespace) -- Commandline arguments for this run |
|
hyp (dict) -- Hyperparameters for this run |
|
|
|
""" |
|
self.current_epoch = 0 |
|
|
|
self.current_epoch_logged_images = set() |
|
|
|
self.max_imgs_to_log_per_epoch = 16 |
|
|
|
|
|
if "bbox_interval" in opt: |
|
self.bbox_interval = opt.bbox_interval |
|
self.clearml = clearml |
|
self.task = None |
|
self.data_dict = None |
|
if self.clearml: |
|
self.task = Task.init( |
|
project_name="YOLOv5" if str(opt.project).startswith("runs/") else opt.project, |
|
task_name=opt.name if opt.name != "exp" else "Training", |
|
tags=["YOLOv5"], |
|
output_uri=True, |
|
reuse_last_task_id=opt.exist_ok, |
|
auto_connect_frameworks={"pytorch": False, "matplotlib": False}, |
|
|
|
) |
|
|
|
|
|
|
|
self.task.connect(hyp, name="Hyperparameters") |
|
self.task.connect(opt, name="Args") |
|
|
|
|
|
self.task.set_base_docker( |
|
"ultralytics/yolov5:latest", |
|
docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"', |
|
docker_setup_bash_script="pip install clearml", |
|
) |
|
|
|
|
|
if opt.data.startswith("clearml://"): |
|
|
|
|
|
self.data_dict = construct_dataset(opt.data) |
|
|
|
|
|
opt.data = self.data_dict |
|
|
|
def log_scalars(self, metrics, epoch): |
|
""" |
|
Log scalars/metrics to ClearML. |
|
|
|
arguments: |
|
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...} |
|
epoch (int) iteration number for the current set of metrics |
|
""" |
|
for k, v in metrics.items(): |
|
title, series = k.split("/") |
|
self.task.get_logger().report_scalar(title, series, v, epoch) |
|
|
|
def log_model(self, model_path, model_name, epoch=0): |
|
""" |
|
Log model weights to ClearML. |
|
|
|
arguments: |
|
model_path (PosixPath or str) Path to the model weights |
|
model_name (str) Name of the model visible in ClearML |
|
epoch (int) Iteration / epoch of the model weights |
|
""" |
|
self.task.update_output_model( |
|
model_path=str(model_path), name=model_name, iteration=epoch, auto_delete_file=False |
|
) |
|
|
|
def log_summary(self, metrics): |
|
""" |
|
Log final metrics to a summary table. |
|
|
|
arguments: |
|
metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...} |
|
""" |
|
for k, v in metrics.items(): |
|
self.task.get_logger().report_single_value(k, v) |
|
|
|
def log_plot(self, title, plot_path): |
|
""" |
|
Log image as plot in the plot section of ClearML. |
|
|
|
arguments: |
|
title (str) Title of the plot |
|
plot_path (PosixPath or str) Path to the saved image file |
|
""" |
|
img = mpimg.imread(plot_path) |
|
fig = plt.figure() |
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) |
|
ax.imshow(img) |
|
|
|
self.task.get_logger().report_matplotlib_figure(title, "", figure=fig, report_interactive=False) |
|
|
|
def log_debug_samples(self, files, title="Debug Samples"): |
|
""" |
|
Log files (images) as debug samples in the ClearML task. |
|
|
|
arguments: |
|
files (List(PosixPath)) a list of file paths in PosixPath format |
|
title (str) A title that groups together images with the same values |
|
""" |
|
for f in files: |
|
if f.exists(): |
|
it = re.search(r"_batch(\d+)", f.name) |
|
iteration = int(it.groups()[0]) if it else 0 |
|
self.task.get_logger().report_image( |
|
title=title, series=f.name.replace(f"_batch{iteration}", ""), local_path=str(f), iteration=iteration |
|
) |
|
|
|
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25): |
|
""" |
|
Draw the bounding boxes on a single image and report the result as a ClearML debug sample. |
|
|
|
arguments: |
|
image_path (PosixPath) the path the original image file |
|
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] |
|
class_names (dict): dict containing mapping of class int to class name |
|
image (Tensor): A torch tensor containing the actual image data |
|
""" |
|
if ( |
|
len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch |
|
and self.current_epoch >= 0 |
|
and (self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images) |
|
): |
|
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2)) |
|
annotator = Annotator(im=im, pil=True) |
|
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])): |
|
color = colors(i) |
|
|
|
class_name = class_names[int(class_nr)] |
|
confidence_percentage = round(float(conf) * 100, 2) |
|
label = f"{class_name}: {confidence_percentage}%" |
|
|
|
if conf > conf_threshold: |
|
annotator.rectangle(box.cpu().numpy(), outline=color) |
|
annotator.box_label(box.cpu().numpy(), label=label, color=color) |
|
|
|
annotated_image = annotator.result() |
|
self.task.get_logger().report_image( |
|
title="Bounding Boxes", series=image_path.name, iteration=self.current_epoch, image=annotated_image |
|
) |
|
self.current_epoch_logged_images.add(image_path) |
|
|