wayandadang
commited on
Commit
·
01f0a3d
1
Parent(s):
10de2bb
first commit
Browse files- .gitignore +148 -0
- app.py +80 -0
- kan_linear.py +91 -0
- requirements.txt +78 -0
.gitignore
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Local folder
|
10 |
+
local_folder
|
11 |
+
project_demo
|
12 |
+
project_demo/
|
13 |
+
logs/
|
14 |
+
local_folder/
|
15 |
+
/demo.py
|
16 |
+
demo.py
|
17 |
+
runs/
|
18 |
+
|
19 |
+
# Large folders
|
20 |
+
weights/
|
21 |
+
videos/
|
22 |
+
images/
|
23 |
+
|
24 |
+
|
25 |
+
# Distribution / packaging
|
26 |
+
.Python
|
27 |
+
build/
|
28 |
+
develop-eggs/
|
29 |
+
dist/
|
30 |
+
downloads/
|
31 |
+
eggs/
|
32 |
+
.eggs/
|
33 |
+
lib/
|
34 |
+
lib64/
|
35 |
+
parts/
|
36 |
+
sdist/
|
37 |
+
var/
|
38 |
+
wheels/
|
39 |
+
pip-wheel-metadata/
|
40 |
+
share/python-wheels/
|
41 |
+
*.egg-info/
|
42 |
+
.installed.cfg
|
43 |
+
*.egg
|
44 |
+
MANIFEST
|
45 |
+
|
46 |
+
# PyInstaller
|
47 |
+
# Usually these files are written by a python script from a template
|
48 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
49 |
+
*.manifest
|
50 |
+
*.spec
|
51 |
+
|
52 |
+
.vscode
|
53 |
+
|
54 |
+
# Installer logs
|
55 |
+
pip-log.txt
|
56 |
+
pip-delete-this-directory.txt
|
57 |
+
|
58 |
+
# Unit test / coverage reports
|
59 |
+
htmlcov/
|
60 |
+
.tox/
|
61 |
+
.nox/
|
62 |
+
.coverage
|
63 |
+
.coverage.*
|
64 |
+
.cache
|
65 |
+
nosetests.xml
|
66 |
+
coverage.xml
|
67 |
+
*.cover
|
68 |
+
*.py,cover
|
69 |
+
.hypothesis/
|
70 |
+
.pytest_cache/
|
71 |
+
|
72 |
+
# Translations
|
73 |
+
*.mo
|
74 |
+
*.pot
|
75 |
+
|
76 |
+
# Django stuff:
|
77 |
+
*.log
|
78 |
+
local_settings.py
|
79 |
+
db.sqlite3
|
80 |
+
db.sqlite3-journal
|
81 |
+
|
82 |
+
# Flask stuff:
|
83 |
+
instance/
|
84 |
+
.webassets-cache
|
85 |
+
|
86 |
+
# Scrapy stuff:
|
87 |
+
.scrapy
|
88 |
+
|
89 |
+
# Sphinx documentation
|
90 |
+
docs/_build/
|
91 |
+
|
92 |
+
# PyBuilder
|
93 |
+
target/
|
94 |
+
|
95 |
+
# Jupyter Notebook
|
96 |
+
.ipynb_checkpoints
|
97 |
+
|
98 |
+
# IPython
|
99 |
+
profile_default/
|
100 |
+
ipython_config.py
|
101 |
+
|
102 |
+
# pyenv
|
103 |
+
.python-version
|
104 |
+
|
105 |
+
# pipenv
|
106 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
107 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
108 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
109 |
+
# install all needed dependencies.
|
110 |
+
#Pipfile.lock
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
venv_/
|
128 |
+
ENV/
|
129 |
+
env.bak/
|
130 |
+
venv.bak/
|
131 |
+
|
132 |
+
# Spyder project settings
|
133 |
+
.spyderproject
|
134 |
+
.spyproject
|
135 |
+
|
136 |
+
# Rope project settings
|
137 |
+
.ropeproject
|
138 |
+
|
139 |
+
# mkdocs documentation
|
140 |
+
/site
|
141 |
+
|
142 |
+
# mypy
|
143 |
+
.mypy_cache/
|
144 |
+
.dmypy.json
|
145 |
+
dmypy.json
|
146 |
+
|
147 |
+
# Pyre type checker
|
148 |
+
.pyre/
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import streamlit as st
|
7 |
+
import numpy as np
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
from kan_linear import KANLinear
|
11 |
+
|
12 |
+
class CNNKAN(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super(CNNKAN, self).__init__()
|
15 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
|
16 |
+
self.pool1 = nn.MaxPool2d(2)
|
17 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
18 |
+
self.pool2 = nn.MaxPool2d(2)
|
19 |
+
self.kan1 = KANLinear(64 * 50 * 50, 256)
|
20 |
+
self.kan2 = KANLinear(256, 1)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = F.selu(self.conv1(x))
|
24 |
+
x = self.pool1(x)
|
25 |
+
x = F.selu(self.conv2(x))
|
26 |
+
x = self.pool2(x)
|
27 |
+
x = x.view(x.size(0), -1)
|
28 |
+
x = self.kan1(x)
|
29 |
+
x = self.kan2(x)
|
30 |
+
return x
|
31 |
+
|
32 |
+
# Assuming the model weights are saved in 'model.pth'
|
33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
model = CNNKAN().to(device)
|
35 |
+
model.load_state_dict(torch.load('weights/model_weights_KAN1.pth', map_location=device))
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
# Define image transformations
|
39 |
+
transform = transforms.Compose([
|
40 |
+
transforms.Resize((200, 200)),
|
41 |
+
transforms.ToTensor()
|
42 |
+
])
|
43 |
+
|
44 |
+
# Streamlit app
|
45 |
+
st.title("Image Classification with CNN-KAN")
|
46 |
+
|
47 |
+
st.sidebar.title("Upload Images")
|
48 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "webp"])
|
49 |
+
image_url = st.sidebar.text_input("Or enter image URL...")
|
50 |
+
|
51 |
+
def load_image_from_url(url):
|
52 |
+
response = requests.get(url)
|
53 |
+
img = Image.open(BytesIO(response.content)).convert('RGB')
|
54 |
+
return img
|
55 |
+
|
56 |
+
img = None
|
57 |
+
|
58 |
+
if uploaded_file is not None:
|
59 |
+
img = Image.open(uploaded_file).convert('RGB')
|
60 |
+
elif image_url:
|
61 |
+
try:
|
62 |
+
img = load_image_from_url(image_url)
|
63 |
+
except Exception as e:
|
64 |
+
st.sidebar.error(f"Error loading image from URL: {e}")
|
65 |
+
|
66 |
+
if img is not None:
|
67 |
+
st.image(np.array(img), caption='Uploaded Image.', use_column_width=True)
|
68 |
+
if st.button('Predict'):
|
69 |
+
img_tensor = transform(img).unsqueeze(0).to(device)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
output = model(img_tensor)
|
73 |
+
prob = torch.sigmoid(output).item()
|
74 |
+
|
75 |
+
st.write(f"Prediction: {prob:.4f}")
|
76 |
+
|
77 |
+
if prob < 0.5:
|
78 |
+
st.write("This image is classified as a dandelion flower.")
|
79 |
+
else:
|
80 |
+
st.write("This image is classified as grass.")
|
kan_linear.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import math
|
5 |
+
|
6 |
+
class KANLinear(nn.Module):
|
7 |
+
def __init__(self, in_features, out_features, grid_size=5, spline_order=3, scale_noise=0.1, scale_base=1.0, scale_spline=1.0, enable_standalone_scale_spline=True, base_activation=nn.SiLU, grid_eps=0.02, grid_range=[-1, 1]):
|
8 |
+
super(KANLinear, self).__init__()
|
9 |
+
self.in_features = in_features
|
10 |
+
self.out_features = out_features
|
11 |
+
self.grid_size = grid_size
|
12 |
+
self.spline_order = spline_order
|
13 |
+
|
14 |
+
h = (grid_range[1] - grid_range[0]) / grid_size
|
15 |
+
grid = ((torch.arange(-spline_order, grid_size + spline_order + 1) * h + grid_range[0]).expand(in_features, -1).contiguous())
|
16 |
+
self.register_buffer("grid", grid)
|
17 |
+
|
18 |
+
self.base_weight = nn.Parameter(torch.Tensor(out_features, in_features))
|
19 |
+
self.spline_weight = nn.Parameter(torch.Tensor(out_features, in_features, grid_size + spline_order))
|
20 |
+
if enable_standalone_scale_spline:
|
21 |
+
self.spline_scaler = nn.Parameter(torch.Tensor(out_features, in_features))
|
22 |
+
|
23 |
+
self.scale_noise = scale_noise
|
24 |
+
self.scale_base = scale_base
|
25 |
+
self.scale_spline = scale_spline
|
26 |
+
self.enable_standalone_scale_spline = enable_standalone_scale_spline
|
27 |
+
self.base_activation = base_activation()
|
28 |
+
self.grid_eps = grid_eps
|
29 |
+
|
30 |
+
self.reset_parameters()
|
31 |
+
|
32 |
+
def reset_parameters(self):
|
33 |
+
nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base)
|
34 |
+
with torch.no_grad():
|
35 |
+
noise = ((torch.rand(self.grid_size + 1, self.in_features, self.out_features) - 1 / 2) * self.scale_noise / self.grid_size)
|
36 |
+
self.spline_weight.data.copy_((self.scale_spline if not self.enable_standalone_scale_spline else 1.0) * self.curve2coeff(self.grid.T[self.spline_order : -self.spline_order], noise))
|
37 |
+
if self.enable_standalone_scale_spline:
|
38 |
+
nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline)
|
39 |
+
|
40 |
+
def b_splines(self, x: torch.Tensor):
|
41 |
+
assert x.dim() == 2 and x.size(1) == self.in_features
|
42 |
+
grid = self.grid
|
43 |
+
x = x.unsqueeze(-1)
|
44 |
+
bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype)
|
45 |
+
for k in range(1, self.spline_order + 1):
|
46 |
+
bases = ((x - grid[:, : -(k + 1)]) / (grid[:, k:-1] - grid[:, : -(k + 1)]) * bases[:, :, :-1]) + ((grid[:, k + 1 :] - x) / (grid[:, k + 1 :] - grid[:, 1:(-k)]) * bases[:, :, 1:])
|
47 |
+
assert bases.size() == (x.size(0), self.in_features, self.grid_size + self.spline_order)
|
48 |
+
return bases.contiguous()
|
49 |
+
|
50 |
+
def curve2coeff(self, x: torch.Tensor, y: torch.Tensor):
|
51 |
+
assert x.dim() == 2 and x.size(1) == self.in_features
|
52 |
+
assert y.size() == (x.size(0), self.in_features, self.out_features)
|
53 |
+
A = self.b_splines(x).transpose(0, 1)
|
54 |
+
B = y.transpose(0, 1)
|
55 |
+
solution = torch.linalg.lstsq(A, B).solution
|
56 |
+
result = solution.permute(2, 0, 1)
|
57 |
+
assert result.size() == (self.out_features, self.in_features, self.grid_size + self.spline_order)
|
58 |
+
return result.contiguous()
|
59 |
+
|
60 |
+
@property
|
61 |
+
def scaled_spline_weight(self):
|
62 |
+
return self.spline_weight * (self.spline_scaler.unsqueeze(-1) if self.enable_standalone_scale_spline else 1.0)
|
63 |
+
|
64 |
+
def forward(self, x: torch.Tensor):
|
65 |
+
assert x.dim() == 2 and x.size(1) == self.in_features
|
66 |
+
base_output = F.linear(self.base_activation(x), self.base_weight)
|
67 |
+
spline_output = F.linear(self.b_splines(x).view(x.size(0), -1), self.scaled_spline_weight.view(self.out_features, -1))
|
68 |
+
return base_output + spline_output
|
69 |
+
|
70 |
+
@torch.no_grad()
|
71 |
+
def update_grid(self, x: torch.Tensor, margin=0.01):
|
72 |
+
assert x.dim() == 2 and x.size(1) == self.in_features
|
73 |
+
batch = x.size(0)
|
74 |
+
splines = self.b_splines(x).permute(1, 0, 2)
|
75 |
+
orig_coeff = self.scaled_spline_weight.permute(1, 2, 0)
|
76 |
+
unreduced_spline_output = torch.bmm(splines, orig_coeff).permute(1, 0, 2)
|
77 |
+
x_sorted = torch.sort(x, dim=0)[0]
|
78 |
+
grid_adaptive = x_sorted[torch.linspace(0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device)]
|
79 |
+
uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size
|
80 |
+
grid_uniform = (torch.arange(self.grid_size + 1, dtype=torch.float32, device=x.device).unsqueeze(1) * uniform_step + x_sorted[0] - margin)
|
81 |
+
grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
|
82 |
+
grid = torch.cat([grid[:1] - uniform_step * torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1), grid, grid[-1:] + uniform_step * torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1)], dim=0)
|
83 |
+
self.grid.copy_(grid.T)
|
84 |
+
self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output))
|
85 |
+
|
86 |
+
def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0):
|
87 |
+
l1_fake = self.spline_weight.abs().mean(-1)
|
88 |
+
regularization_loss_activation = l1_fake.sum()
|
89 |
+
p = l1_fake / regularization_loss_activation
|
90 |
+
regularization_loss_entropy = -torch.sum(p * p.log())
|
91 |
+
return regularize_activation * regularization_loss_activation + regularize_entropy * regularization_loss_entropy
|
requirements.txt
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==5.2.0
|
2 |
+
attrs==23.2.0
|
3 |
+
blinker==1.7.0
|
4 |
+
cachetools==5.3.3
|
5 |
+
certifi==2024.2.2
|
6 |
+
charset-normalizer==3.3.2
|
7 |
+
click==8.1.7
|
8 |
+
contourpy==1.2.0
|
9 |
+
cycler==0.12.1
|
10 |
+
filelock==3.13.1
|
11 |
+
fonttools==4.50.0
|
12 |
+
fsspec==2024.3.1
|
13 |
+
gitdb==4.0.11
|
14 |
+
GitPython==3.1.42
|
15 |
+
idna==3.6
|
16 |
+
Jinja2==3.1.3
|
17 |
+
jsonschema==4.21.1
|
18 |
+
jsonschema-specifications==2023.12.1
|
19 |
+
kiwisolver==1.4.5
|
20 |
+
markdown-it-py==3.0.0
|
21 |
+
MarkupSafe==2.1.5
|
22 |
+
matplotlib==3.8.3
|
23 |
+
mdurl==0.1.2
|
24 |
+
mpmath==1.3.0
|
25 |
+
networkx==3.2.1
|
26 |
+
numpy==1.26.4
|
27 |
+
nvidia-cublas-cu12==12.1.3.1
|
28 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
29 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
30 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
31 |
+
nvidia-cudnn-cu12==8.9.2.26
|
32 |
+
nvidia-cufft-cu12==11.0.2.54
|
33 |
+
nvidia-curand-cu12==10.3.2.106
|
34 |
+
nvidia-cusolver-cu12==11.4.5.107
|
35 |
+
nvidia-cusparse-cu12==12.1.0.106
|
36 |
+
nvidia-nccl-cu12==2.19.3
|
37 |
+
nvidia-nvjitlink-cu12==12.4.99
|
38 |
+
nvidia-nvtx-cu12==12.1.105
|
39 |
+
opencv-python==4.9.0.80
|
40 |
+
packaging==23.2
|
41 |
+
pandas==2.2.1
|
42 |
+
pillow==10.2.0
|
43 |
+
protobuf==4.25.3
|
44 |
+
psutil==5.9.8
|
45 |
+
py-cpuinfo==9.0.0
|
46 |
+
pyarrow==15.0.2
|
47 |
+
pydeck==0.8.1b0
|
48 |
+
Pygments==2.17.2
|
49 |
+
pyparsing==3.1.2
|
50 |
+
python-dateutil==2.9.0.post0
|
51 |
+
pytz==2024.1
|
52 |
+
PyYAML==6.0.1
|
53 |
+
referencing==0.34.0
|
54 |
+
requests==2.31.0
|
55 |
+
rich==13.7.1
|
56 |
+
rpds-py==0.18.0
|
57 |
+
scipy==1.12.0
|
58 |
+
seaborn==0.13.2
|
59 |
+
six==1.16.0
|
60 |
+
smmap==5.0.1
|
61 |
+
streamlit==1.32.2
|
62 |
+
sympy==1.12
|
63 |
+
tenacity==8.2.3
|
64 |
+
thop==0.1.1.post2209072238
|
65 |
+
toml==0.10.2
|
66 |
+
toolz==0.12.1
|
67 |
+
torch==2.2.1
|
68 |
+
torchvision==0.17.1
|
69 |
+
tornado==6.4
|
70 |
+
tqdm==4.66.2
|
71 |
+
triton==2.2.0
|
72 |
+
typing_extensions==4.10.0
|
73 |
+
tzdata==2024.1
|
74 |
+
ultralytics==8.1.30
|
75 |
+
urllib3==2.2.1
|
76 |
+
watchdog==4.0.0
|
77 |
+
pafy
|
78 |
+
youtube-dl
|