Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Update tokenflow_pnp.py
Browse files- tokenflow_pnp.py +90 -31
tokenflow_pnp.py
CHANGED
@@ -9,6 +9,7 @@ import torchvision.transforms as T
|
|
9 |
import argparse
|
10 |
from PIL import Image
|
11 |
import yaml
|
|
|
12 |
from tqdm import tqdm
|
13 |
from transformers import logging
|
14 |
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
@@ -25,9 +26,9 @@ VAE_BATCH_SIZE = 10
|
|
25 |
class TokenFlow(nn.Module):
|
26 |
def __init__(self, config,
|
27 |
pipe,
|
28 |
-
frames=None,
|
29 |
-
|
30 |
-
|
31 |
super().__init__()
|
32 |
self.config = config
|
33 |
self.device = config["device"]
|
@@ -61,7 +62,16 @@ class TokenFlow(nn.Module):
|
|
61 |
print('SD model loaded')
|
62 |
|
63 |
# data
|
64 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
self.latents_path = self.get_latents_path()
|
66 |
|
67 |
# load frames
|
@@ -120,15 +130,13 @@ class TokenFlow(nn.Module):
|
|
120 |
|
121 |
def get_latents_path(self):
|
122 |
read_from_files = self.frames is None
|
123 |
-
# read_from_files = True
|
124 |
if read_from_files:
|
125 |
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}',
|
126 |
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}')
|
127 |
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name]
|
128 |
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
|
129 |
-
print("n_frames", n_frames)
|
130 |
latents_path = latents_path[np.argmax(n_frames)]
|
131 |
-
|
132 |
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"])
|
133 |
|
134 |
else:
|
@@ -138,9 +146,8 @@ class TokenFlow(nn.Module):
|
|
138 |
if self.config["n_frames"] % self.config["batch_size"] != 0:
|
139 |
# make n_frames divisible by batch_size
|
140 |
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
|
141 |
-
|
142 |
if read_from_files:
|
143 |
-
print("YOOOOOOO", os.path.join(latents_path, 'latents'))
|
144 |
return os.path.join(latents_path, 'latents')
|
145 |
else:
|
146 |
return None
|
@@ -206,37 +213,61 @@ class TokenFlow(nn.Module):
|
|
206 |
# encode to latents
|
207 |
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
|
208 |
# get noise
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
if not read_from_files:
|
211 |
return None, frames, latents, eps
|
212 |
return paths, frames, latents, eps
|
213 |
|
214 |
def get_ddim_eps(self, latent, indices):
|
215 |
read_from_files = self.inverted_latents is None
|
216 |
-
# read_from_files = True
|
217 |
if read_from_files:
|
218 |
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
|
219 |
-
print("noisets:", noisest)
|
220 |
-
print("indecies:", indices)
|
221 |
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
|
222 |
noisy_latent = torch.load(latents_path)[indices].to(self.device)
|
223 |
-
|
224 |
-
# path = os.path.join('test_latents', f'noisy_latents_{noisest}.pt')
|
225 |
-
# f_noisy_latent = torch.load(path)[indices].to(self.device)
|
226 |
-
# print(f_noisy_latent==noisy_latent)
|
227 |
else:
|
228 |
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()])
|
229 |
-
print("noisets:", noisest)
|
230 |
-
print("indecies:", indices)
|
231 |
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices]
|
232 |
|
233 |
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
|
234 |
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
|
235 |
eps = (noisy_latent - mu_T * latent) / sigma_T
|
236 |
return eps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
@torch.no_grad()
|
239 |
-
def denoise_step(self, x, t, indices):
|
240 |
# register the time step and features in pnp injection modules
|
241 |
read_files = self.inverted_latents is None
|
242 |
|
@@ -264,21 +295,31 @@ class TokenFlow(nn.Module):
|
|
264 |
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
|
265 |
|
266 |
# compute the denoising step with the reference model
|
267 |
-
denoised_latent = self.scheduler.step(noise_pred, t, x)[
|
|
|
268 |
return denoised_latent
|
269 |
|
270 |
@torch.autocast(dtype=torch.float16, device_type='cuda')
|
271 |
-
def batched_denoise_step(self, x, t, indices):
|
272 |
batch_size = self.config["batch_size"]
|
273 |
denoised_latents = []
|
274 |
-
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size)
|
275 |
-
|
276 |
register_pivotal(self, True)
|
277 |
-
|
|
|
|
|
|
|
|
|
278 |
register_pivotal(self, False)
|
279 |
for i, b in enumerate(range(0, len(x), batch_size)):
|
280 |
register_batch_idx(self, i)
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
282 |
denoised_latents = torch.cat(denoised_latents)
|
283 |
return denoised_latents
|
284 |
|
@@ -309,7 +350,13 @@ class TokenFlow(nn.Module):
|
|
309 |
|
310 |
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
|
311 |
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
|
314 |
|
315 |
if save_files:
|
@@ -321,12 +368,24 @@ class TokenFlow(nn.Module):
|
|
321 |
return edited_frames
|
322 |
|
323 |
def sample_loop(self, x, indices):
|
324 |
-
save_files = self.inverted_latents is None # if we're in the original non-demo
|
325 |
-
# save_files = True
|
326 |
if save_files:
|
327 |
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
|
328 |
-
|
329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
decoded_latents = self.decode_latents(x)
|
332 |
if save_files:
|
|
|
9 |
import argparse
|
10 |
from PIL import Image
|
11 |
import yaml
|
12 |
+
import inspect
|
13 |
from tqdm import tqdm
|
14 |
from transformers import logging
|
15 |
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
|
|
26 |
class TokenFlow(nn.Module):
|
27 |
def __init__(self, config,
|
28 |
pipe,
|
29 |
+
frames = None,
|
30 |
+
inverted_latents = None, #X0,...,XT,
|
31 |
+
zs = None):
|
32 |
super().__init__()
|
33 |
self.config = config
|
34 |
self.device = config["device"]
|
|
|
62 |
print('SD model loaded')
|
63 |
|
64 |
# data
|
65 |
+
self.inversion = config['inversion']
|
66 |
+
if self.inversion == 'ddpm':
|
67 |
+
self.skip_steps = config['skip_steps']
|
68 |
+
self.eta = 1.0
|
69 |
+
else:
|
70 |
+
self.eta = 0.0
|
71 |
+
self.extra_step_kwargs = self.prepare_extra_step_kwargs(self.eta)
|
72 |
+
|
73 |
+
# data
|
74 |
+
self.frames, self.inverted_latents, self.zs = frames, inverted_latents, zs
|
75 |
self.latents_path = self.get_latents_path()
|
76 |
|
77 |
# load frames
|
|
|
130 |
|
131 |
def get_latents_path(self):
|
132 |
read_from_files = self.frames is None
|
|
|
133 |
if read_from_files:
|
134 |
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}',
|
135 |
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}')
|
136 |
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name]
|
137 |
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
|
|
|
138 |
latents_path = latents_path[np.argmax(n_frames)]
|
139 |
+
|
140 |
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"])
|
141 |
|
142 |
else:
|
|
|
146 |
if self.config["n_frames"] % self.config["batch_size"] != 0:
|
147 |
# make n_frames divisible by batch_size
|
148 |
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
|
149 |
+
|
150 |
if read_from_files:
|
|
|
151 |
return os.path.join(latents_path, 'latents')
|
152 |
else:
|
153 |
return None
|
|
|
213 |
# encode to latents
|
214 |
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
|
215 |
# get noise
|
216 |
+
if self.inversion == 'ddim':
|
217 |
+
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device)
|
218 |
+
elif self.inversion == 'ddpm':
|
219 |
+
eps = self.get_ddpm_noise()
|
220 |
+
else:
|
221 |
+
raise NotImplementedError()
|
222 |
+
|
223 |
if not read_from_files:
|
224 |
return None, frames, latents, eps
|
225 |
return paths, frames, latents, eps
|
226 |
|
227 |
def get_ddim_eps(self, latent, indices):
|
228 |
read_from_files = self.inverted_latents is None
|
|
|
229 |
if read_from_files:
|
230 |
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
|
|
|
|
|
231 |
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
|
232 |
noisy_latent = torch.load(latents_path)[indices].to(self.device)
|
|
|
|
|
|
|
|
|
233 |
else:
|
234 |
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()])
|
|
|
|
|
235 |
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices]
|
236 |
|
237 |
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
|
238 |
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
|
239 |
eps = (noisy_latent - mu_T * latent) / sigma_T
|
240 |
return eps
|
241 |
+
|
242 |
+
def get_ddpm_noise(self):
|
243 |
+
read_from_files = self.inverted_latents is None
|
244 |
+
idx_to_t = {int(k): int(v) for k, v in enumerate(self.scheduler.timesteps)}
|
245 |
+
t = idx_to_t[self.skip_steps]
|
246 |
+
if read_from_files:
|
247 |
+
x0_path = os.path.join(self.latents_path, f'noisy_latents_{t}.pt')
|
248 |
+
zs_path = os.path.join(self.latents_path, f'noise_total.pt')
|
249 |
+
x0 = torch.load(x0_path)[:self.config["n_frames"]].to(self.device)
|
250 |
+
zs = torch.load(zs_path)[self.skip_steps:, :self.config["n_frames"]].to(self.device)
|
251 |
+
else:
|
252 |
+
x0 = self.inverted_latents[f'noisy_latents_{t}'][:self.config["n_frames"]].to(self.device)
|
253 |
+
zs = self.zs[self.skip_steps:, :self.config["n_frames"]].to(self.device)
|
254 |
+
return x0, zs
|
255 |
+
|
256 |
+
def prepare_extra_step_kwargs(self, eta):
|
257 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
258 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
259 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
260 |
+
# and should be between [0, 1]
|
261 |
+
|
262 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
263 |
+
extra_step_kwargs = {}
|
264 |
+
if accepts_eta:
|
265 |
+
extra_step_kwargs["eta"] = eta
|
266 |
+
|
267 |
+
return extra_step_kwargs
|
268 |
|
269 |
@torch.no_grad()
|
270 |
+
def denoise_step(self, x, t, indices, zs=None):
|
271 |
# register the time step and features in pnp injection modules
|
272 |
read_files = self.inverted_latents is None
|
273 |
|
|
|
295 |
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
|
296 |
|
297 |
# compute the denoising step with the reference model
|
298 |
+
denoised_latent = self.scheduler.step(noise_pred, t, x, variance_noise=zs, **self.extra_step_kwargs)[
|
299 |
+
'prev_sample']
|
300 |
return denoised_latent
|
301 |
|
302 |
@torch.autocast(dtype=torch.float16, device_type='cuda')
|
303 |
+
def batched_denoise_step(self, x, t, indices, zs=None):
|
304 |
batch_size = self.config["batch_size"]
|
305 |
denoised_latents = []
|
306 |
+
pivotal_idx = torch.randint(batch_size, (len(x) // batch_size,)) + torch.arange(0, len(x), batch_size)
|
307 |
+
|
308 |
register_pivotal(self, True)
|
309 |
+
if zs is None:
|
310 |
+
zs_input = None
|
311 |
+
else:
|
312 |
+
zs_input = zs[pivotal_idx]
|
313 |
+
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx], zs_input)
|
314 |
register_pivotal(self, False)
|
315 |
for i, b in enumerate(range(0, len(x), batch_size)):
|
316 |
register_batch_idx(self, i)
|
317 |
+
if zs is None:
|
318 |
+
zs_input = None
|
319 |
+
else:
|
320 |
+
zs_input = zs[b:b + batch_size]
|
321 |
+
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]
|
322 |
+
, zs_input))
|
323 |
denoised_latents = torch.cat(denoised_latents)
|
324 |
return denoised_latents
|
325 |
|
|
|
350 |
|
351 |
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
|
352 |
|
353 |
+
if self.inversion == 'ddim':
|
354 |
+
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0])
|
355 |
+
elif self.inversion == 'ddpm':
|
356 |
+
noisy_latents = self.eps[0]
|
357 |
+
else:
|
358 |
+
raise NotImplementedError()
|
359 |
+
|
360 |
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
|
361 |
|
362 |
if save_files:
|
|
|
368 |
return edited_frames
|
369 |
|
370 |
def sample_loop(self, x, indices):
|
371 |
+
save_files = self.inverted_latents is None # if we're in the original non-demo settinge
|
|
|
372 |
if save_files:
|
373 |
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
|
374 |
+
|
375 |
+
timesteps = self.scheduler.timesteps
|
376 |
+
if self.inversion == 'ddpm':
|
377 |
+
zs_total = self.eps[1]
|
378 |
+
|
379 |
+
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs_total.shape[0]:])}
|
380 |
+
timesteps = timesteps[-zs_total.shape[0]:]
|
381 |
+
|
382 |
+
for i, t in enumerate(tqdm(timesteps, desc="Sampling")):
|
383 |
+
if self.inversion == 'ddpm':
|
384 |
+
idx = t_to_idx[int(t)]
|
385 |
+
zs = zs_total[idx]
|
386 |
+
else:
|
387 |
+
zs = None
|
388 |
+
x = self.batched_denoise_step(x, t, indices, zs)
|
389 |
|
390 |
decoded_latents = self.decode_latents(x)
|
391 |
if save_files:
|