|
import os |
|
import torch |
|
import torch.nn as nn |
|
import pandas as pd |
|
import torch.nn.functional as F |
|
from lavis.models.protein_models.protein_function_opt import Blip2ProteinMistral |
|
from lavis.models.base_model import FAPMConfig |
|
import spaces |
|
import gradio as gr |
|
from esm_scripts.extract import run_demo |
|
from esm import pretrained, FastaBatchedDataset |
|
from data.evaluate_data.utils import Ontology |
|
import difflib |
|
import re |
|
|
|
|
|
|
|
model = Blip2ProteinMistral(config=FAPMConfig(), esm_size='3b') |
|
model.load_checkpoint("model/checkpoint_mf2.pth") |
|
model.to('cuda') |
|
|
|
model_esm, alphabet = pretrained.load_model_and_alphabet('esm2_t36_3B_UR50D') |
|
model_esm.to('cuda') |
|
model_esm.eval() |
|
|
|
godb = Ontology(f'data/go1.4-basic.obo', with_rels=True) |
|
go_des = pd.read_csv('data/go_descriptions1.4.txt', sep='|', header=None) |
|
go_des.columns = ['id', 'text'] |
|
go_des = go_des.dropna() |
|
go_des['id'] = go_des['id'].apply(lambda x: re.sub('_', ':', x)) |
|
go_obo_set = set(go_des['id'].tolist()) |
|
go_des['text'] = go_des['text'].apply(lambda x: x.lower()) |
|
GO_dict = dict(zip(go_des['text'], go_des['id'])) |
|
Func_dict = dict(zip(go_des['id'], go_des['text'])) |
|
|
|
|
|
terms_mf = pd.read_pickle('data/terms/mf_terms.pkl') |
|
choices_mf = [Func_dict[i] for i in list(set(terms_mf['gos']))] |
|
choices = {x.lower(): x for x in choices_mf} |
|
|
|
|
|
@spaces.GPU |
|
def generate_caption(protein, prompt): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
protein_name = 'protein_name' |
|
protein_seq = protein |
|
include = 'per_tok' |
|
repr_layers = [36] |
|
truncation_seq_length = 1024 |
|
toks_per_batch = 4096 |
|
print("start") |
|
dataset = FastaBatchedDataset([protein_name], [protein_seq]) |
|
print("dataset prepared") |
|
batches = dataset.get_batch_indices(toks_per_batch, extra_toks_per_seq=1) |
|
print("batches prepared") |
|
|
|
data_loader = torch.utils.data.DataLoader( |
|
dataset, collate_fn=alphabet.get_batch_converter(truncation_seq_length), batch_sampler=batches |
|
) |
|
print(f"Read sequences") |
|
return_contacts = "contacts" in include |
|
|
|
assert all(-(model_esm.num_layers + 1) <= i <= model_esm.num_layers for i in repr_layers) |
|
repr_layers = [(i + model_esm.num_layers + 1) % (model_esm.num_layers + 1) for i in repr_layers] |
|
|
|
with torch.no_grad(): |
|
for batch_idx, (labels, strs, toks) in enumerate(data_loader): |
|
print( |
|
f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)" |
|
) |
|
if torch.cuda.is_available(): |
|
toks = toks.to(device="cuda", non_blocking=True) |
|
out = model_esm(toks, repr_layers=repr_layers, return_contacts=return_contacts) |
|
representations = { |
|
layer: t.to(device="cpu") for layer, t in out["representations"].items() |
|
} |
|
if return_contacts: |
|
contacts = out["contacts"].to(device="cpu") |
|
for i, label in enumerate(labels): |
|
result = {"label": label} |
|
truncate_len = min(truncation_seq_length, len(strs[i])) |
|
|
|
|
|
if "per_tok" in include: |
|
result["representations"] = { |
|
layer: t[i, 1: truncate_len + 1].clone() |
|
for layer, t in representations.items() |
|
} |
|
if "mean" in include: |
|
result["mean_representations"] = { |
|
layer: t[i, 1: truncate_len + 1].mean(0).clone() |
|
for layer, t in representations.items() |
|
} |
|
if "bos" in include: |
|
result["bos_representations"] = { |
|
layer: t[i, 0].clone() for layer, t in representations.items() |
|
} |
|
if return_contacts: |
|
result["contacts"] = contacts[i, : truncate_len, : truncate_len].clone() |
|
esm_emb = result['representations'][36] |
|
''' |
|
inputs = tokenizer([protein], return_tensors="pt", padding=True, truncation=True).to('cuda') |
|
with torch.no_grad(): |
|
outputs = model_esm(**inputs) |
|
esm_emb = outputs.last_hidden_state.detach()[0] |
|
''' |
|
print("esm embedding generated") |
|
esm_emb = F.pad(esm_emb.t(), (0, 1024 - len(esm_emb))).t().to('cuda') |
|
print("esm embedding processed") |
|
samples = {'name': ['protein_name'], |
|
'image': torch.unsqueeze(esm_emb, dim=0), |
|
'text_input': ['none'], |
|
'prompt': [prompt]} |
|
|
|
|
|
prediction = model.generate(samples, length_penalty=0., num_beams=15, num_captions=10, temperature=1., |
|
repetition_penalty=1.0) |
|
|
|
x = prediction[0] |
|
x = [eval(i) for i in x.split('; ')] |
|
pred_terms = [] |
|
for i in x: |
|
txt = i[0] |
|
prob = i[1] |
|
sim_list = difflib.get_close_matches(txt.lower(), choices, n=1, cutoff=0.9) |
|
if len(sim_list) > 0: |
|
pred_terms.append((sim_list[0], prob)) |
|
return str(pred_terms) |
|
|
|
|
|
|
|
|
|
description = """Quick demonstration of the FAPM model for protein function prediction. Upload an protein sequence to generate a function description. Modify the Prompt to provide the taxonomy information. |
|
|
|
The model used in this app is available at [Hugging Face Model Hub](https://huggingface.co/wenkai/FAPM) and the source code can be found on [GitHub](https://github.com/xiangwenkai/FAPM/tree/main).""" |
|
|
|
iface = gr.Interface( |
|
fn=generate_caption, |
|
inputs=[gr.Textbox(type="text", label="Upload sequence"), gr.Textbox(type="text", label="Prompt")], |
|
outputs=gr.Textbox(label="Generated description"), |
|
description=description |
|
) |
|
|
|
|
|
iface.launch() |
|
|
|
|
|
|
|
|
|
|