wenhao-gao
commited on
Commit
·
81224d9
1
Parent(s):
3beee34
update
Browse files- app.py +105 -125
- requirements.txt +3 -5
app.py
CHANGED
@@ -1,142 +1,122 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
from
|
6 |
-
import torch
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
torch_dtype = torch.float16
|
13 |
-
else:
|
14 |
-
torch_dtype = torch.float32
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
generator = torch.Generator().manual_seed(seed)
|
29 |
-
|
30 |
-
image = pipe(
|
31 |
-
prompt = prompt,
|
32 |
-
negative_prompt = negative_prompt,
|
33 |
-
guidance_scale = guidance_scale,
|
34 |
-
num_inference_steps = num_inference_steps,
|
35 |
-
width = width,
|
36 |
-
height = height,
|
37 |
-
generator = generator
|
38 |
-
).images[0]
|
39 |
-
|
40 |
-
return image, seed
|
41 |
|
42 |
examples = [
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
|
|
|
|
46 |
]
|
47 |
|
48 |
-
css="""
|
49 |
-
#col-container {
|
50 |
-
margin: 0 auto;
|
51 |
-
max-width: 640px;
|
52 |
-
}
|
53 |
-
"""
|
54 |
|
55 |
-
with gr.Blocks(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
""")
|
61 |
-
|
62 |
-
with gr.
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
show_label=False,
|
67 |
-
max_lines=1,
|
68 |
-
placeholder="Enter your prompt",
|
69 |
-
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
-
seed = gr.Slider(
|
86 |
-
label="Seed",
|
87 |
-
minimum=0,
|
88 |
-
maximum=MAX_SEED,
|
89 |
-
step=1,
|
90 |
-
value=0,
|
91 |
-
)
|
92 |
-
|
93 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
|
97 |
-
width = gr.Slider(
|
98 |
-
label="Width",
|
99 |
-
minimum=256,
|
100 |
-
maximum=MAX_IMAGE_SIZE,
|
101 |
-
step=32,
|
102 |
-
value=1024, #Replace with defaults that work for your model
|
103 |
-
)
|
104 |
-
|
105 |
-
height = gr.Slider(
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=32,
|
110 |
-
value=1024, #Replace with defaults that work for your model
|
111 |
-
)
|
112 |
-
|
113 |
with gr.Row():
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
|
142 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_molecule2d import molecule2d
|
3 |
+
from synformer.chem.mol import Molecule
|
4 |
+
from synformer.sampler.analog.parallel import run_sampling_one_cpu
|
5 |
+
from huggingface_hub import hf_hub_download
|
|
|
6 |
|
7 |
+
REPO_ID = "whgao/synformer"
|
8 |
+
CKPT_FILENAME = "sf_ed_default.ckpt"
|
9 |
+
MAT_FILENAME = "matrix.pkl"
|
10 |
+
FPI_FILENAME = "fpindex.pkl"
|
11 |
+
ckpt_path = hf_hub_download(REPO_ID, CKPT_FILENAME)
|
12 |
+
mat_path = hf_hub_download(REPO_ID, MAT_FILENAME)
|
13 |
+
fpi_path = hf_hub_download(REPO_ID, FPI_FILENAME)
|
14 |
|
15 |
+
last_result = {}
|
|
|
|
|
|
|
16 |
|
17 |
+
# Function to clear all inputs
|
18 |
+
def clear_inputs():
|
19 |
+
# Return default or empty values to reset each input component
|
20 |
+
return None, 24, 64, 0
|
21 |
|
22 |
+
def sample(smi, search_width, exhaustiveness):
|
23 |
+
result_df = run_sampling_one_cpu(
|
24 |
+
input=Molecule(smi),
|
25 |
+
model_path=ckpt_path,
|
26 |
+
mat_path=mat_path,
|
27 |
+
fpi_path=fpi_path,
|
28 |
+
search_width=search_width,
|
29 |
+
exhaustiveness=exhaustiveness,
|
30 |
+
time_limit=180,
|
31 |
+
max_results=100,
|
32 |
+
max_evolve_steps=24,
|
33 |
+
sort_by_scores=True,
|
34 |
+
)
|
35 |
+
result_df = result_df[:30]
|
36 |
+
last_result["results_df"] = result_df
|
37 |
+
smiles = result_df.iloc[0]["smiles"]
|
38 |
+
similarity = result_df.iloc[0]["score"]
|
39 |
+
synthesis = result_df.iloc[0]["synthesis"]
|
40 |
+
return smiles, similarity, synthesis, gr.update(maximum=len(result_df)-1)
|
41 |
|
|
|
|
|
42 |
|
43 |
+
def select_from_output(index):
|
44 |
+
df_results = last_result["results_df"]
|
45 |
+
return df_results.iloc[index]["smiles"], df_results.iloc[index]["score"], df_results.iloc[index]["synthesis"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
examples = [
|
48 |
+
"Nc1cccc(S(=O)(=O)N2CCCN(S(=O)(=O)c3ccc4c(c3)OCCO4)CC2)c1",
|
49 |
+
"CN1C[C@H](Nc2cnn(C)c(=O)c2)C[C@H](c2ccccc2)C1",
|
50 |
+
"COc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1",
|
51 |
+
"CC[C@@H]1OC[C@@]23Cc4cc(F)c(N)cc4-c4ccc5c(c42)C(=CC(F)(F)O5)[C@@H]1C3=O",
|
52 |
+
"O=C(OCC(=O)N1[C@H](C(=O)O)C[C@@H]2CCCC[C@@H]21)[C@H](Cc1cbccc1)NC(I)c1bcccc1",
|
53 |
]
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown(f"""
|
58 |
+
# Demo of [SynFormer](https://github.com/wenhao-gao/synformer/tree/main)
|
59 |
+
This page demonstrates the SynFormer-ED model, which takes a molecule as input—regardless of its synthetic accessibility—and outputs
|
60 |
+
identical or approximate molecules along with their associated synthetic paths. The demo runs on CPUs and typically takes about
|
61 |
+
one minute per run but can be accelerated by reducing the search width and exhaustiveness. The model may take longer if the server
|
62 |
+
is busy. Since the sampling is stochastic, you may run the demo multiple times to explore different results, with a maximum of
|
63 |
+
30 molecules displayed at once.
|
64 |
+
To learn more about SynFormer’s architecture and applications, check out [our paper](https://github.com/wenhao-gao/synformer/tree/main).
|
65 |
+
|
66 |
+
Authors: [Wenhao Gao](mailto:[email protected]), Shitong Luo, Connor W. Coley
|
67 |
""")
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column(scale=0.5):
|
70 |
+
input_molecule = molecule2d(label="SMILES Input")
|
71 |
+
slider_1 = gr.Slider(minimum=1, maximum=100, step=1, label="Search Width", value=24)
|
72 |
+
slider_2 = gr.Slider(minimum=1, maximum=100, step=1, label="Exhaustiveness", value=64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Row():
|
75 |
+
with gr.Column(scale=0.5):
|
76 |
+
run_btn = gr.Button("Run on sample")
|
77 |
+
with gr.Column(scale=0.5):
|
78 |
+
clear_btn = gr.Button("Clear")
|
79 |
+
|
80 |
+
with gr.Column(scale=0.5):
|
81 |
+
index_slider = gr.Slider(minimum=0, maximum=10, step=1, label="Select Output Index", value=0, interactive=True)
|
82 |
+
output_similarity = gr.Text(label="Tanimoto Similarity")
|
83 |
+
output_molecule = molecule2d(label="Output")
|
84 |
+
output_synpath = gr.Textbox(label="Synthetic Path")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column(scale=1):
|
88 |
+
gr.Markdown("### Examples")
|
89 |
+
gr.Examples(
|
90 |
+
examples = examples,
|
91 |
+
inputs = [input_molecule]
|
92 |
+
)
|
93 |
+
|
94 |
+
run_btn.click(
|
95 |
+
fn=sample,
|
96 |
+
inputs=[
|
97 |
+
input_molecule,
|
98 |
+
slider_1,
|
99 |
+
slider_2
|
100 |
+
],
|
101 |
+
outputs=[
|
102 |
+
output_molecule,
|
103 |
+
output_similarity,
|
104 |
+
output_synpath,
|
105 |
+
index_slider
|
106 |
+
],
|
107 |
+
api_name="Run"
|
108 |
+
)
|
109 |
+
|
110 |
+
index_slider.change(
|
111 |
+
fn=select_from_output,
|
112 |
+
inputs=[index_slider],
|
113 |
+
outputs=[output_molecule, output_similarity, output_synpath],
|
114 |
+
)
|
115 |
+
|
116 |
+
clear_btn.click(
|
117 |
+
fn=clear_inputs,
|
118 |
+
inputs=[],
|
119 |
+
outputs=[input_molecule, slider_1, slider_2, index_slider]
|
120 |
)
|
121 |
|
122 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
|
2 |
-
diffusers
|
3 |
-
invisible_watermark
|
4 |
torch
|
5 |
-
|
6 |
-
|
|
|
1 |
+
gradio_molecule2d
|
|
|
|
|
2 |
torch
|
3 |
+
synformer
|
4 |
+
huggingface-hub
|