Spaces:
Runtime error
Runtime error
File size: 5,952 Bytes
896437a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from network import U2NET
import os
from PIL import Image
import cv2
import gdown
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from collections import OrderedDict
from options import opt
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print("----No checkpoints at given path----")
return
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
return model
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
class Normalize_image(object):
"""Normalize given tensor into given mean and standard dev
Args:
mean (float): Desired mean to substract from tensors
std (float): Desired std to divide from tensors
"""
def __init__(self, mean, std):
assert isinstance(mean, (float))
if isinstance(mean, float):
self.mean = mean
if isinstance(std, float):
self.std = std
self.normalize_1 = transforms.Normalize(self.mean, self.std)
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)
def __call__(self, image_tensor):
if image_tensor.shape[0] == 1:
return self.normalize_1(image_tensor)
elif image_tensor.shape[0] == 3:
return self.normalize_3(image_tensor)
elif image_tensor.shape[0] == 18:
return self.normalize_18(image_tensor)
else:
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
def apply_transform(img):
transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)
return transform_rgb(img)
def generate_mask(input_image, net, palette, device = 'cpu'):
#img = Image.open(input_image).convert('RGB')
img = input_image
img_size = img.size
img = img.resize((768, 768), Image.BICUBIC)
image_tensor = apply_transform(img)
image_tensor = torch.unsqueeze(image_tensor, 0)
alpha_out_dir = os.path.join(opt.output,'alpha')
cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg')
os.makedirs(alpha_out_dir, exist_ok=True)
os.makedirs(cloth_seg_out_dir, exist_ok=True)
with torch.no_grad():
output_tensor = net(image_tensor.to(device))
output_tensor = F.log_softmax(output_tensor[0], dim=1)
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
output_tensor = torch.squeeze(output_tensor, dim=0)
output_arr = output_tensor.cpu().numpy()
classes_to_save = []
# Check which classes are present in the image
for cls in range(1, 4): # Exclude background class (0)
if np.any(output_arr == cls):
classes_to_save.append(cls)
# Save alpha masks
for cls in classes_to_save:
alpha_mask = (output_arr == cls).astype(np.uint8) * 255
alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D
alpha_mask_img = Image.fromarray(alpha_mask, mode='L')
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC)
alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png'))
# Save final cloth segmentations
cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P')
cloth_seg.putpalette(palette)
cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC)
cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png'))
return cloth_seg
def check_or_download_model(file_path):
if not os.path.exists(file_path):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY"
gdown.download(url, file_path, quiet=False)
print("Model downloaded successfully.")
else:
print("Model already exists.")
def load_seg_model(checkpoint_path, device='cpu'):
net = U2NET(in_ch=3, out_ch=4)
check_or_download_model(checkpoint_path)
net = load_checkpoint(net, checkpoint_path)
net = net.to(device)
net = net.eval()
return net
def main(args):
device = 'cuda:0' if args.cuda else 'cpu'
# Create an instance of your model
model = load_seg_model(args.checkpoint_path, device=device)
palette = get_palette(4)
img = Image.open(args.image).convert('RGB')
cloth_seg = generate_mask(img, net=model, palette=palette, device=device)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.')
parser.add_argument('--image', type=str, help='Path to the input image')
parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)')
parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file')
args = parser.parse_args()
main(args) |