bewchatbot / app.py
william4416's picture
Update app.py
7784f50 verified
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
# Load pretrained DialoGPT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
# Define course information
course_info = {
"Engineering": ["Civil Engineering", "Mechanical Engineering", "Electrical Engineering", "Software Engineering", "etc."],
"Information Technology": ["Computer Science", "Information Systems", "Cybersecurity", "Data Science", "etc."],
"Business": ["Business Administration", "Accounting", "Finance", "Marketing", "Management", "etc."],
"Health Sciences": ["Nursing", "Pharmacy", "Health Information Management", "Public Health", "etc."],
"Design and Architecture": ["Architecture", "Industrial Design", "Visual Communication", "etc."],
"Science": ["Environmental Science", "Biotechnology", "Chemistry", "Physics", "etc."],
"Law": ["Law", "Legal Studies", "etc."],
"Arts and Social Sciences": ["Communication", "Education", "International Studies", "Sociology", "etc."],
"Built Environment": ["Urban Planning", "Construction Management", "Property Economics", "etc."],
"Creative Industries": ["Animation", "Photography", "Creative Writing", "Film and Television", "etc."]
}
# Function to generate response
def generate_response(input_text, chat_history=[]):
# Tokenize the new input sentence
new_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt")
# Append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.tensor(chat_history), new_input_ids], dim=-1)
# Generate a response
response_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# Decode the generated response
response = tokenizer.decode(response_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
# Append the response to the chat history
chat_history.extend(new_input_ids.tolist())
chat_history.extend(response_ids[:, bot_input_ids.shape[-1]:].tolist())
return response, chat_history
# Create a Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=["text", "text"],
outputs="text",
title="AI ChatBot",
description="A conversational AI powered by DialoGPT.",
theme="huggingface"
)
# Launch the interface
iface.launch()