william4416 commited on
Commit
9dff9cc
·
verified ·
1 Parent(s): 8235a7c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -38
app.py DELETED
@@ -1,38 +0,0 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
2
- import gradio as gr
3
- from transformers import pipeline
4
- import jsonl
5
-
6
- # Load the model
7
- qa_pipeline = pipeline("question-answering", model="william4416/bewtesttwo")
8
-
9
- # Define the function to process the JSONL file
10
- def process_jsonl(file_path):
11
- with open(file_path, "r", encoding="utf-8") as f:
12
- data = f.readlines()
13
- return [eval(line) for line in data]
14
-
15
- # Define the function to answer questions from the model
16
- def answer_question(context, question):
17
- # Process the context from the JSONL file
18
- contexts = [item["context"] for item in context]
19
- # Perform question answering
20
- answers = []
21
- for ctxt in contexts:
22
- answer = qa_pipeline(question=question, context=ctxt)
23
- answers.append(answer["answer"])
24
- return answers
25
-
26
- # Create the interface
27
- context_input = gr.inputs.File(label="utsdata.jsonl")
28
- question_input = gr.inputs.Textbox(label="Enter your question", lines=3)
29
- output_text = gr.outputs.Textbox(label="Answer")
30
-
31
- # Create the interface
32
- gr.Interface(
33
- fn=answer_question,
34
- inputs=[context_input, question_input],
35
- outputs=output_text,
36
- title="Question Answering with Hugging Face Transformers",
37
- description="Upload a JSONL file containing contexts and ask a question to get answers.",
38
- ).launch()