Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load your model and tokenizer locally | |
model_name = "william590y/AshishGPT" # Replace with your Hugging Face model name | |
print("Loading model and tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") | |
print("Model loaded successfully!") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Prepare the input context from history | |
input_text = system_message + "\n" | |
for user_input, bot_response in history: | |
input_text += f"User: {user_input}\nAssistant: {bot_response}\n" | |
input_text += f"User: {message}\nAssistant:" | |
# Tokenize input and generate response | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True).to("cuda") | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract the assistant's response | |
response = response[len(input_text):].strip() | |
return response | |
# Set up the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |