File size: 2,295 Bytes
b3a99ca 1a0d7ed 988c7cc af2645a 1791798 5f2f34f 06154c7 44041d6 988c7cc 5f2f34f 988c7cc 5f2f34f 988c7cc 5f2f34f 988c7cc 5f2f34f 40fbdfe 12ad28b e012855 12ad28b 06154c7 12ad28b 1791798 4cc36bd 988c7cc 5f2f34f ee6c2b7 3c112ae cb1ffb7 3c112ae f2d6089 0f71b02 e35cd34 8d748e6 57251df 95ea877 988c7cc 96af30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import google.generativeai as palm
import pandas as pd
import os
import io
from flask import Flask, request, jsonify
from flask_cors import CORS, cross_origin
import pandas as pd
import firebase_admin
from firebase_admin import credentials, firestore, auth
import streamlit as st
import requests
import pandas as pd
from datetime import datetime
from st_on_hover_tabs import on_hover_tabs
import streamlit as st
import os
from pandasai.llm import GoogleGemini
from pandasai import SmartDataframe
from pandasai.responses.response_parser import ResponseParser
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import random
from dotenv import load_dotenv
import json
from dotenv import load_dotenv
load_dotenv()
app = Flask(__name__)
cors = CORS(app)
@app.route("/", methods=["GET"])
def home():
return "Hello Qx!"
def generateResponse(dataFrame,prompt):
llm = GoogleGemini(api_key=gemini_api_key)
pandas_agent = SmartDataframe(dataFrame,config={"llm":llm, "response_parser":StreamLitResponse})
answer = pandas_agent.chat(prompt)
return answer
# Initialize Firebase app
if not firebase_admin._apps:
cred = credentials.Certificate("ecomplaintbook-firebase-adminsdk-4q5bo-d27afe12f8.json")
firebase_admin.initialize_app(cred)
db = firestore.client()
inventory_ref = db.collection('inventory')
sales_ref = db.collection('sales')
inventory_list = []
for doc in inventory_ref.stream():
a = doc.to_dict()
inventory_list.append(a)
sales_list = []
for doc in sales_ref.stream():
a = doc.to_dict()
sales_list.append(a)
inventory_df = pd.DataFrame(inventory_list)
sales_df = pd.DataFrame(sales_list)
@app.route("/predict", methods=["POST"])
@cross_origin()
def bot():
load_dotenv()
#
json_table = request.json.get("json_table")
user_question = request.json.get("user_question")
#data = request.get_json(force=True)TRye
#print(req_body)
#data = eval(req_body)
#json_table = data["json_table"]
#user_question = data["user_question"]
#print(json_table)
print(user_question)
data = eval(str(json_table))
df = pd.DataFrame(data)
print(list(df))
return jsonify(response)
if __name__ == "__main__":
app.run(debug=True,host="0.0.0.0", port=7860)
|