Spaces:
Sleeping
Sleeping
File size: 1,675 Bytes
b3a99ca 988c7cc af2645a 988c7cc 5f2f34f 988c7cc 5f2f34f 988c7cc 5f2f34f 988c7cc 5f2f34f 988c7cc 5f2f34f 12ad28b e012855 12ad28b 4cc36bd 988c7cc 5f2f34f 12ad28b 5f2f34f 988c7cc 5f2f34f af2645a 988c7cc 96af30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import google.generativeai as palm
import pandas as pd
import io
from flask import Flask, request, jsonify
from langchain.chains.question_answering import load_qa_chain
from langchain import PromptTemplate, LLMChain
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain.chat_models import ChatOpenAI
from langchain.agents.agent_types import AgentType
from langchain.chat_models import ChatOpenAI
import pandas as pd
from langchain.llms import OpenAI
from dotenv import load_dotenv
import google.generativeai as palm
from langchain.llms import GooglePalm
import json
from dotenv import load_dotenv
load_dotenv()
app = Flask(__name__)
@app.route("/", methods=["GET"])
def home():
return "Hello Qx!"
@app.route("/predict", methods=["POST"])
def bot():
load_dotenv()
#
json_table = request.json.get("json_table")
user_question = request.json.get("user_question")
df = pd.DataFrame(json_table)
#df['Profit'] = df['Profit'].apply(lambda x: "R{:.1f}".format((x)))
#df['Revenue'] = df['Revenue'].apply(lambda x: "R{:.1f}".format((x)))
#llm = ChatOpenAI(model_name='gpt-3.5-turbo-0613', temperature=0, openai_api_key=os.getenv('OPENAI_API_KEY'))
llm = GooglePalm(temperature=0, google_api_key=os.environ['PALM'])
#agent = create_pandas_dataframe_agent(llm, df, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS)
agent = create_pandas_dataframe_agent(llm, df, agent="structured_chat-zero-shot-react-description", verbose=True)
response = agent.run(user_question)
return jsonify(response)
if __name__ == "__main__":
app.run(debug=True,host="0.0.0.0", port=7860)
|