Spaces:
Sleeping
Sleeping
File size: 8,752 Bytes
d813e31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import re
import os
from datetime import datetime
import openai
from google.cloud import firestore
from dotenv import load_dotenv
# Make API connection
load_dotenv()
# gemini_api_key = os.environ['Gemini']
o_api_key = os.getenv("openai_api_key")
openai.api_key = o_api_key
# Authenticate to Firesotre with the JSON account key
db = firestore.Client.from_service_account_json("firestore-key.json")
# Generate AI response from user input
def generateResponse(prompt):
#----- Call API to classify and extract relevant transaction information
# These templates help provide a unified response format for use as context clues when
# parsing the AI generated response into a structured data format
relevant_info_template = """
Intent: The CRUD operation
Transaction Type: The type of transaction
Details: as a sublist of the key details like name of item, amount, description, among other details you are able to extract.
"""
sample_response_template = """
The information provided indicates that you want to **create/record** a new transaction.
**Extracted Information**:
**Intent**: Create
Transaction 1:
**Transaction Type**: Purchase
**Details**:
- Item: Car
- Purpose: Business
- Amount: 1000
- Tax: 200
- Note: A new car for business
Transaction 2:
**Transaction Type**: Expense
**Details**:
- Item: Office Chair
- Amount: 300 USD
- Category: Furniture
"""
response = openai.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": f"You are a helpful assistant that classifies transactions written in natural language into CRUD operations (Create, Read, Update, and Delete) and extracts relevant information. Format the relevant information extracted from the transaction text in this format: {relevant_info_template}. You can use markdown syntax to present a nicely formated and readable response to the user, but make sure the user does not see the markdown keyword. Keywords and field names must be in bold face. A sample response could look like this: {sample_response_template}. Delineate multiple transactions with the label 'Transaction 1' before the start of the relevant information for each transaction. There should be only one intent even in the case of multiple transactions."},
{"role": "user", "content": prompt}
]
)
#----- Process response
try:
response = response.choices[0].message.content
except Exception as e:
print(f'An error occurred: {str(e)}')
response = None
return response
# TODO Handle multiple multiple transactions from one user input.
def parse_ai_response(response_text):
# Initialize the structured data dictionary
data = {
"intent": None,
"transaction_type": None,
"details": {},
"created_at": datetime.now().isoformat() # Add current date and time
}
# Extract the intent
intent_match = re.search(r"\*\*Intent\*\*:\s*(\w+)", response_text)
if intent_match:
data["intent"] = intent_match.group(1)
# Extract the transaction type
transaction_type_match = re.search(r"\*\*Transaction Type\*\*:\s*(\w+)", response_text)
if transaction_type_match:
data["transaction_type"] = transaction_type_match.group(1)
# Extract details
details = {}
detail_matches = re.findall(r"-\s*([\w\s]+):\s*([\d\w\s,.]+(?:\sUSD)?)", response_text)
for field, value in detail_matches:
# Clean up the field name and value
field = field.strip().lower().replace(" ", "_") # Convert to snake_case
value = value.strip()
# Convert numeric values where possible
if "USD" in value:
value = float(value.replace(" USD", "").replace(",", ""))
elif value.isdigit():
value = int(value)
details[field] = value
# Store details in the structured data
data["details"] = details
return data
def parse_multiple_transactions(response_text):
transactions = []
# Split the response into transaction sections based on keyword 'Transaction #'
transaction_sections = re.split(r"Transaction \d+:", response_text, flags=re.IGNORECASE)
# Adjust regex to handle variations in "Transaction X:"
# transaction_sections = re.split(r"(?i)(?<=\n)transaction\s+\d+:", response_text)
transaction_sections = [section.strip() for section in transaction_sections if section.strip()]
# Remove the first section if it's not a valid transaction
if not re.search(r"\*\*Transaction Type\*\*", transaction_sections[0], re.IGNORECASE):
transaction_sections.pop(0)
print(len(transaction_sections))
print(transaction_sections)
# Extract intent: with support for a single intent per user prompt
intent_match = re.search(r"\*\*Intent\*\*:\s*(\w+)", response_text)
if intent_match:
intent = intent_match.group(1)
for section in transaction_sections:
# Initialize transaction data
transaction_data = {
"intent": intent, # global intent
"transaction_type": None,
"details": {},
"created_at": datetime.now().isoformat()
}
# transaction_data["intent"] = intent
# Extract transaction type
transaction_type_match = re.search(r"\*\*Transaction Type\*\*:\s*(\w+)", section)
if transaction_type_match:
transaction_data["transaction_type"] = transaction_type_match.group(1)
# Extract details
details = {}
detail_matches = re.findall(r"-\s*([\w\s]+):\s*([\d\w\s,.]+(?:\sUSD)?)", section)
for field, value in detail_matches:
field = field.strip().lower().replace(" ", "_") # Convert to snake_case
value = value.strip()
# Convert numeric values where possible
if "USD" in value:
value = float(value.replace(" USD", "").replace(",", ""))
elif value.isdigit():
value = int(value)
details[field] = value
transaction_data["details"] = details
transactions.append(transaction_data)
return transactions
def create_transaction(user_phone, transaction_data):
for transaction in transaction_data:
doc_ref = db.collection("users").document(user_phone).collection("transactions").document()
# transaction_data['transaction_id'] # let's default to random generated document ids
doc_ref.set(transaction)
# print("Transaction created successfully!")
return True
# Update logic:
# -
def update_transaction(user_phone, transaction_id, update_data):
doc_ref = db.collection("users").document(user_phone).collection("transactions").document(transaction_id)
doc_ref.update(update_data)
# print("Transaction updated successfully!")
return True
def fetch_transaction(user_phone, transaction_id=None):
if transaction_id:
doc_ref = db.collection("users").document(user_phone).collection("transactions").document(transaction_id)
transaction = doc_ref.get()
if transaction.exists:
return transaction.to_dict()
else:
# print("Transaction not found.")
return None
else:
collection_ref = db.collection("users").document(user_phone).collection("transactions")
transactions = [doc.to_dict() for doc in collection_ref.stream()]
return transactions
# Delete fields or an entire transaction document.
# Delete specific fields
def delete_transaction_fields(user_phone, transaction_id, fields_to_delete):
doc_ref = db.collection("users").document(user_phone).collection("transactions").document(transaction_id)
updates = {field: firestore.DELETE_FIELD for field in fields_to_delete}
doc_ref.update(updates)
print("Fields deleted successfully!")
# Delete an entire transaction
def delete_transaction(user_phone, transaction_id):
doc_ref = db.collection("users").document(user_phone).collection("transactions").document(transaction_id)
doc_ref.delete()
print("Transaction deleted successfully!")
# Example usage
# response_text = """
# The information provided indicates that you want to **create/record** a new transaction.
# **Extracted Information**:
# **Intent**: Create
# **Transaction Type**: Purchase
# **Details**:
# - Item: Car
# - Purpose: Business
# - Amount: 100000 USD
# - Tax: 1000 USD
# """
# parsed_data = parse_ai_response(response_text)
# print(parsed_data)
|