|
import google.generativeai as palm |
|
import pandas as pd |
|
import os |
|
import io |
|
from flask import Flask, request, jsonify |
|
from flask_cors import CORS, cross_origin |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain import PromptTemplate, LLMChain |
|
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.agents.agent_types import AgentType |
|
from langchain.chat_models import ChatOpenAI |
|
import pandas as pd |
|
from langchain.llms import OpenAI |
|
from dotenv import load_dotenv |
|
import google.generativeai as palm |
|
from langchain.llms import GooglePalm |
|
import json |
|
|
|
|
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
|
|
app = Flask(__name__) |
|
cors = CORS(app) |
|
|
|
@app.route("/", methods=["GET"]) |
|
def home(): |
|
|
|
return "Hello Qx!" |
|
|
|
@app.route("/predict", methods=["POST"]) |
|
@cross_origin() |
|
def bot(): |
|
load_dotenv() |
|
|
|
json_table = request.json.get("json_table") |
|
user_question = request.json.get("user_question") |
|
|
|
|
|
|
|
|
|
|
|
|
|
print(user_question) |
|
data = eval(str(json_table)) |
|
df = pd.DataFrame(data) |
|
print(list(df)) |
|
|
|
|
|
|
|
|
|
llm = GooglePalm(temperature=0, google_api_key=os.environ['PALM']) |
|
|
|
agent = create_pandas_dataframe_agent(llm, df, agent="structured_chat-zero-shot-react-description", verbose=True) |
|
response = agent.run(user_question) |
|
|
|
return jsonify(response) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.run(debug=True,host="0.0.0.0", port=7860) |
|
|