Quantx-WhatsApp / main.py
rairo's picture
Update main.py
87908a4
raw
history blame
3.13 kB
import google.generativeai as palm
import pandas as pd
import io
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from langchain.llms import GooglePalm
import pandas as pd
#from yolopandas import pd
import os
from langchain.embeddings import GooglePalmEmbeddings
# a class to create a question answering system based on information retrieval
from langchain.chains import RetrievalQA
# a class for splitting text into fixed-sized chunks with an optional overlay
from langchain.text_splitter import RecursiveCharacterTextSplitter
# a class to create a vector index using FAISS, a library for approximate nearest neighbor search
from langchain.vectorstores import FAISS
# a class for loading PDF documents from a directory
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.chains.question_answering import load_qa_chain
from langchain.chains import ConversationalRetrievalChain
from langchain.schema.vectorstore import VectorStoreRetriever
import google.generativeai
from dotenv import load_dotenv
load_dotenv()
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
# load PDF files from a directory
loader = PyPDFDirectoryLoader("documents/")
data = loader.load()
# print the loaded data, which is a list of tuples (file name, text extracted from the PDF)
#print(data)
# split the extracted data into text chunks using the text_splitter, which splits the text based on the specified number of characters and overlap
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=20)
text_chunks = text_splitter.split_documents(data)
# print the number of chunks obtained
#print(len(text_chunks))
embeddings = GooglePalmEmbeddings(google_api_key=os.environ['PALM'])
# create embeddings for each text chunk using the FAISS class, which creates a vector index using FAISS and allows efficient searches between vectors
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
#print(type(vector_store))
def ask_pdfs(user_question):
load_dotenv()
llm = GooglePalm(temperature=0, google_api_key=os.environ['PALM'])
# Create a question answering system based on information retrieval using the RetrievalQA class, which takes as input a neural language model, a chain type and a retriever (an object that allows you to retrieve the most relevant chunks of text for a query)
retriever = VectorStoreRetriever(vectorstore=vector_store)
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
response =qa.run(user_question)
#print("Response:",response)
return response
app = Flask(__name__)
@app.route("/", methods=["POST"])
def whatsapp():
# user input
user_msg = request.values.get('Body', '').lower()
# creating object of MessagingResponse
response = MessagingResponse()
# User Query
q = user_msg
response = ask_pdfs(q)
return str(response)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)